论文部分内容阅读
CO2氧化丙烷脱氢与直接脱氢和O2氧化脱氢技术相比,具有反应温度相对较低和丙烯选择性高的优势。此外,CO2作为温和氧化剂,在脱氢反应过程中存在与逆水煤气变换反应的耦合以及消积炭反应,有利于提高脱氢反应活性和催化剂稳定性。目前,CO2氧化丙烷脱氢制丙烯催化剂的研究主要集中在贵金属和过渡金属氧化物催化剂,但仍存在丙烯产率低和催化剂失活快等问题。近年来,研究发现第三主族氮化物(BN和GaN)可以活化烃类分子中C-H键,有望成为一种潜在的CO2氧化丙烷脱氢催化材料。但是,氮化物制备条件苛刻(需要高温氨化)且CO2氧化脱氢反应机制尚不明确。针对上述问题,本论文采用一步法制备GaN纳米颗粒,并研究其对CO2氧化丙烷脱氢反应的性能及动力学。具体研究内容如下:(1)以三聚氰胺为氮源,硝酸镓为镓源,通过固相研磨和惰性气氛中高温原位氨化,一步直接合成GaN纳米颗粒,并确定出最优制备条件。利用XRD、N2物理吸脱附、SEM和TEM对GaN的结构、织构和形貌进行表征。结果发现:(GaN为六方纤锌矿型晶体结构,其颗粒之间存在堆积孔。探针分子化学吸附表征(H2-TPR、CO2-TPO、C3H8-TPD和CO2-TPD)结果表明:GaN纳米颗粒不易被还原,稳定性较好;GaN纳米颗粒对丙烷和二氧化碳气体具有良好的吸附和活化能力。FT-IR表征结果说明GaN纳米颗粒表面存在Ga-H和N-H基团,其可能是活化丙烷的活性中心。(2)将GaN纳米颗粒用于丙烷直接脱氢和CO2氧化丙烷脱氢反应体系,对比结果发现:在500~600℃反应条件下,GaN相比无催化剂条件下表现出较好的脱氢活性;550℃时,CO2氧化丙烷脱氢体系的丙烷转化率为10.6%,丙烯选择性为95.0%,其性能优于同等条件下的丙烷直接脱氢体系。扩散研究发现:GaN粒径小于等于60~80目时无内扩散影响,空速在3000~27000 mL·g-1·h-1范围内无外扩散限制。动力学研究表明:GaN催化丙烷直接脱氢和CO2氧化丙烷脱氢反应的动力学方程分别为(?);GaN催化丙烷直接脱氢和CO2氧化丙烷脱氢反应的活化能分别为43.1 kJ·mol-1和48.3 kJ·mol-1。