论文部分内容阅读
锂离子电池凭借体积小、寿命长等优势广泛应用于智能手机、便携式笔记本电脑等电子设备。随着纯电动汽车、混合型电动汽车的快速发展,人们对锂离子电池的能量密度提出了更高的要求。由于商用石墨类负极材料的比容量通常高于现有正极材料,所以正极材料成为影响电池能量密度的直接因素之一。目前,已经商业化的正极材料有LiCoO2(层状)、Ni-Co-Mn三元材料(层状)、LiFePO4(橄榄石型)以及LiMn2O4(尖晶石型),其中LiMn2O4以其成本低、制备简便、无污染以及三维锂离子通道等优势,得到了科研工作者们的密切关注。但同样也存在一些问题,比如在充放电过程中容易发生姜-泰勒(Jahn-Teller)效应,导致其立方结构出现晶格畸变,阻碍锂离子传输,造成材料循环性能较差。一般地,可以在电极材料或电极外表层包覆氧化物或非氧化物,减少Mn2+的不可逆溶解,改善材料的循环性能。除此之外,还可以在LiMn2-xMxO4(0≤x≤1)锰基体系里通过掺杂Ni、Co、Cr、Ti等金属离子,改变Mn的整体化合价,抑制Jahn-Teller变形,延长材料的循环寿命。本文主要是以尖晶石型锰基材料为基体,通过Ti掺杂以及导电高分子和金属氧化物包覆的途径来改善锰基正极材料的循环稳定性。具体内容包括如下几个方面:(1)以丙烯酰胺单体为软模板剂来源,原位聚合形成聚丙烯酰胺(PAM)软模板,采用PAM软模板法来制备不同Ti含量掺杂的LiMn2-xTixO4(x=0,0.25,0.5,0.75,1)前驱。通过考察Ti的掺杂量,优化出电化学性能最佳的实验条件。结果表明,当Ti的掺杂量x=0.75时,材料的首次放电比容量为286.1 mA h g-1,经过100次循环后,可逆比容量仍然能保持在122.9 mA h g-1,具有良好的循环稳定性。(2)LiNi0.5Mn1.5O4为原材料,采用化学氧化聚合法,在LiNi0.5Mn1.5O4材料的表面原位聚合包覆导电高分子聚苯胺(以下简称PANI),成功地制备了锂离子电池高压正极复合材料LNMO-PANI,并全面地探究了PANI包覆层的质量、厚度、均匀性以及对材料电化学性能的影响。结果表明,当加入5%的苯胺单体时,被包覆在LNMO颗粒上的质量大约为1%,其厚度大约20 nm。常温下,复合材料的首次放电比容量为123.8 mA h g-1,循环200次后,仍有123.4 mA h g-1的可逆容量,容量保持率高达99.7%。同时也表现出了良好的倍率性能和优异的高温性能。(3)以LiNi0.5Mn1.5O4为原材料,按照活性物质:导电炭黑:粘结剂为8:1:1的质量比制备极片,之后在极片表面进行纳米Al2O3的涂敷,并系统地研究了Al2O3的涂敷层对LNMO电极的结构和电化学性能的影响。尤其是Al2O3涂敷层对电极在电化学反应过程中不良界面反应的抑制。结果表明,常温下,复合电极的首次放电比容量为123.7 mA h g-1,200次循环后可逆比容量为129.1 mA h g-1。同时该复合电极也表现出了良好的高温性能以及较小的极化电阻和界面内阻。