论文部分内容阅读
航空发动机是科技竞争的重要领域,航空发动机制造的最大难点之一就是燃烧室的设计。燃烧室燃烧时所需的氧气来源于飞行器周遭的空气,来流空气不均匀会导致燃烧室内燃烧情况十分复杂,实际燃烧呈现非定常和非稳态特性,火焰的温度和速度存在复杂的强耦合关系。掌握燃烧场结构和能量流动对发动机的设计至关重要。研究燃烧问题的两种手段分别是数值模拟和试验。尽管数值模拟技术已发展到了相当高的水平,可以给出空间和时间上的细节信息,但是数值模拟中模型不完整。除此之外,试验还在发现湍流/化学反应相互作用等多物理场耦合的新现象和建模研究上起到了引领作用。因此,飞行器燃烧室的研究发展还主要依靠试验。本试验能够实现燃烧场的速度测量,综合分析后得到湍流火焰混合层演化过程、火焰结构形态和传播过程。为了对火焰机理进行更深入的研究,搭建射流火焰实验台。该实验台能够实现超声速火焰燃烧与低速火焰燃烧,并以此试验平台进行火焰相关研究。采用粒子图像测速技术测量火焰速度场分布,并以此分析火焰流场结构与影响实验结果的因素。针对获取的火焰速度分布,得出以下结论:跨帧时间过大或过小都会影响图像结果;大激光能量能够更清晰的提供流场中粒子的位置信息;滤光片能够极大程度提高粒子在图像中的信噪比;判读小区的选择会流场细节与速度矢量分布的结果;锋面燃烧当量比会改变燃烧形态而流量对燃烧的速度分布影响更多。