论文部分内容阅读
聚对苯二甲酸乙二醇酯(PET)纤维是目前世界上应用最广泛、耗量最大的合成纤维材料,而聚酯纤维的无卤阻燃是当前纤维材料阻燃的重要研究方向。本文利用实验室自制的含磷反应型阻燃剂,与对苯二甲酸、乙二醇进行共聚反应,制得了两种含磷量不同的共聚酯;采用傅立叶红外光谱(FTIR)、核磁共振(NMR)及元素分析等技术和手段对共聚酯的结构进行了表征;利用差示扫描量热(DSC)仪、热重分析(TGA)仪、极限氧指数(LOI)仪对共聚酯的热学性能、热降解行为和阻燃性能进行了研究;运用热重红外联用技术(TG-FTIR)、裂解-气相色谱-质谱联用技术(Py-GC-MS)、直接裂解-质谱技术(DP-MS)研究了共聚酯的热降解气相产物;用FTIR和X射线光电子能谱技术(XPS)对含磷共聚酯的热降解凝缩相产物进行了深入系统地分析,以推测含磷单元对PET的阻燃作用机理;并对共聚酯的可纺性进行了初步探索。本文合成的共聚酯含磷单元位于大分子链的侧基,磷含量分别为0.35%、0.65%,均表现出良好的阻燃性能,其LOI分别为31.5%、33.4%,且具有良好的抗熔滴行为。侧基含磷单元的引入降低了聚酯的玻璃化温度Tg、熔点Tm、结晶温度Tc,以及初期热稳定性和热降解活化能,但对聚酯最大热失重速率(Rmax)及热失重速率峰值温度(Tmax)影响极小;同时三种热降解动力学分析方法研究表明纯PET和侧基含磷阻燃共聚酯(FR-PET)在主降解阶段具有相同的热降解机理,均为反应级数中的收缩球形对称,控制反应过程的步骤为减速形α-t曲线。气相产物分析表明PET和FR-PET具有相似的裂解产物,主要是CO、CO2、CH3CHO、苯甲酸、芳香羧酸酯等。此外证实了FR-PET在热降解过程中首先P-C键发生断裂,形成9,10-二氢-9-氧杂-10-膦菲-10-氧化物(DOPO)等含磷物种,进而P-O键断裂,形成具有捕捉气相火焰反应区H·、HO·的PO自由基,从而在气相中发挥阻燃作用。同时热降解凝缩相产物研究表明FR-PET热降解凝缩相产物中含磷量随着温度的升高逐渐减少,且不含磷酸、偏磷酸等促进聚合物脱水炭化的物质,从凝缩相的角度证实了热降解过程中形成的含磷物种挥发至气相。以上研究结果表明侧基含磷阻燃共聚酯主要以气相机理发挥阻燃作用,而凝缩相阻燃作用极其有限。