【摘 要】
:
菊芋是一种生态经济型农作物,其生长具有多种生态功能,且无病虫危害,因此种植面积逐步扩大。通常菊芋被种植在盐碱地、石油污染地、煤矿土壤上用于改善地质条件。菊芋植株不仅能够产生含有丰富菊粉的可食用块茎果实,还剩余巨大生物量的菊芋叶片和菊芋秸秆。菊芋叶片含有丰富的生物活性物质,而秸秆也通常被考虑用于纤维素和半纤维素的利用,但由于木质纤维素不易降解,所以可以对其进行预处理。本文利用微波辅助提取技术对菊芋叶
论文部分内容阅读
菊芋是一种生态经济型农作物,其生长具有多种生态功能,且无病虫危害,因此种植面积逐步扩大。通常菊芋被种植在盐碱地、石油污染地、煤矿土壤上用于改善地质条件。菊芋植株不仅能够产生含有丰富菊粉的可食用块茎果实,还剩余巨大生物量的菊芋叶片和菊芋秸秆。菊芋叶片含有丰富的生物活性物质,而秸秆也通常被考虑用于纤维素和半纤维素的利用,但由于木质纤维素不易降解,所以可以对其进行预处理。本文利用微波辅助提取技术对菊芋叶的总黄酮进行提取,并采用正交试验对菊芋叶总黄酮的提取条件进行了优化;再利用真菌对菊芋秸秆进行预处理,通过改变秸秆的组成成分,从而影响其热解特性,制备出不同特性的菊芋秸秆材料。具体实验如下:1.分析了提取条件对菊芋叶总黄酮提取的影响,并根据单因素实验的结果,经过正交试验,可以确定其最佳提取条件为:提取温度60℃,提取微波功率为300 W,提取时间30 min,乙醇浓度50%。验证后总黄酮提取得率为12.89%。2.探究了菊芋叶总黄酮的体外抗氧化性以及对四种细菌的抑菌效果。黄酮浓度为10 mg/m L时的DPPH清除能力相当于2 mg/m L的维生素C(VC),黄酮浓度为2 mg/m L时,相当于同等浓度下VC的铁还原力,说明菊芋叶黄酮在体外有良好的抗氧化性。菊芋叶黄酮对大肠杆菌OP50、金黄色葡萄球菌Staphylococcus aureus、铜绿假单胞菌PA14具有较好的抑菌效果,而对大肠杆菌JY26的抑制效果一般。这可能由于黄酮与不同细菌细胞壁和细胞膜之间的反应差异所造成的。3.比较了菊芋秸秆在黑曲霉处理前后的主要成分、结构、表面官能团等的变化,根据黑曲霉处理的时间将处理后的秸秆标记为JAS0~JAS60。结合秸秆的热重(TG)、热重-红外联用(TG-FTIR)、裂解气相色谱-质谱联用(Py-GC/MS)研究其热解过程中发生的动力学的变化、气体溢出变化和热解产物成分的变化。4.探讨了经黑曲霉处理的菊芋秸秆碳的电化学特性。通过CV曲线(Cyclic Voltammetry curves)发现,黑曲霉处理10天的碳(JASC-10)修饰的电极对H2O2的催化响应比裸金电极提高了几倍,而黑曲霉处理20-60天的碳(JASC-20~JAS-60)修饰的电极相比于JASC-10的结果仅有微量的提高。这说明经黑曲霉处理0到10天对秸秆碳的影响最大。最后使用场发射扫描电子显微镜观察JASC-0、JASC-20和JASC-60的结构并进行比较,发现黑曲霉处理过后的秸秆碳孔隙变大,孔壁有明显的变薄。
其他文献
近年来,由于对可穿戴设备和电子皮肤的需求迅速增长,利用共轭聚合物制备本征可拉伸的电子器件逐渐成为该领域研究的重点之一。共轭聚合物薄膜的性能不仅取决于它们的分子结构,而且还与它们的分子取向、分子堆积、晶态结构、薄膜厚度等微、介观尺度密切相关。传统的三维体相膜结构复杂,不利于探索结构与电、力学性能之间的关系。而具有几个单分子层厚度的二维超薄膜可以简化体相膜复杂的多级结构,为探究材料结构与其电、力学性能
优势流是影响土壤非平衡水分和溶质运移的重要机制,也是土壤与地下水快速补给、径流及污染物运移的关键途径,而大孔隙流是优势流最常见的类型。大孔隙结构特征是影响优势流程度最直接的因素,因此本文在选取代表性结构特征的基础上采用室内人造大孔隙土柱模拟实验研究饱和条件下大孔隙直径、数量和位置对壤粘土土壤水分和溶质运移的影响规律,并通过分区收集出流液研究平面水和溶质通量时空变化过程,最后使用Hydrus中的双重
液晶显示器已经是平板显示器中的主流产品,它在人们生产生活的各方面都有广阔的应用。作为液晶显示器的关键组成部件,背光模组逐渐向大尺寸、超薄化、低成本的方向发展。为了缩短混光距离,通常采用二次透镜对LED光源的光线进行再次分配,因此针对透镜的设计工作就非常重要。本文基于非成像光学理论,提出了直下式LED背光模组中双自由曲面透镜的设计方法。首先对确定设计指标下单个透镜目标面照度最优分布进行了讨论,在此基
二维半导体材料由于具备优异的电子和光电子特性,被认为是最有可能替代硅基材料的新一代材料。硒化铟(In2Se3)是一种具有结晶多态性和多种优异电子特性的III-VI二元硫族化合物,它的直接带隙(2.09 e V)既允许高吸收系数,又可以在光激发下有效生成电子-空穴对,这在光伏和光电导探测器等应用中引起了极大关注,被认为是用于光伏器件、光电、相变存储器和离子电池的有前途的材料。这里我们通过引入内建电场
热活化延迟荧光(Thermally Activated Delayed Fluorescence,TADF)材料是许多研究人员用来制备高性能OLED器件的主要选择之一,但TADF材料设计过程中对分子结构有十分严格的要求,而激基复合物则能以更简单的方式获得与传统TADF材料同样的效果。本论文主要研究激基复合物对器件性能和发光机制的影响。通过优化客体掺杂、选择合适的激基复合物主体及界面激基复合物下的超
随着互联网、物联网、大数据以及人工智能等新型高新技术的快速发展,芯片的运算速度不断加快,集成度越来越高,尺寸越来越小,导致电子设备的热流密度急剧增加。与此同时,电子设备的热设计研究进度略显滞后,使电子设备的工作温度分布不均且能耗高的状况得不到有效改善,严重影响了电子设备的正常工作。本文以传热学、计算流体动力学等相关理论为基础,针对电子设备高热流密度下的散热问题,采用沉浸式散热技术,用于电子设备的散
随着第三代宽禁带半导体行业的飞速发展,SiC MOSFET越来越广泛的运用于工业领域,相比于普通的Si半导体功率器件,其具有耐高温,耐高压,低损耗和高开关频率的优势,因此SiC MOSFET在市场上的商业价值也逐步提升。驱动电路对半导体功率器件的运行至关重要,由于SiC MOSFET的特性和普通Si器件存在着差异,在高频工作的条件下,其本身对电路中的寄生参数更为敏感,因此SiC MOSFET驱动电
养殖废水是我国主要污染物来源之一,含有较高浓度的有机物、悬浮物(SS)、氮磷污染物以及病原微生物。规模化奶牛场常采用厌氧消化工艺处理奶牛场废水,将其中的易降解机物转化为甲烷实现资源回收。在实际应用过程中,厌氧消化效果容易受到环境温度以及工艺缺陷的影响,导致厌氧消化沼液中仍含有较高浓度的悬浮物、氮磷污染物、惰性有机物和残留的可降解有机物。厌氧氨氧化工艺由于低廉成本和高效脱氮的优点受到国内外学者广泛关
波浪能作为一种储量巨大,并且尚未完全开发和充分利用的可再生能源,实现对波浪能充分利用将对缓解能源危机和降低环境污染等问题具有十分重大的意义。然而波浪能的低频、宽带、随机、多方向特性与海水腐蚀性的环境,极端天气条件等为波浪能的开发利用带来了巨大的挑战。本文提出了一种针对波浪能收集的多模态振动能量收集装置。该装置对典型的悬臂梁结构进行了重新设计,采用了具有多方向振动能量收集能力和多模态特性的十字梁结构
随机激光是Letokhov在1967年首次提出的基于散射增益介质的激光发射。由于低空间相干性的特点,随机激光在无序光子学中得到了广泛的研究。鉴于其不需要规则的谐振腔,研究人员可以灵活改变随机激光器的形态与增益介质以适应不同用途。而水凝胶作为医学材料领域被广泛研究的对象,与激光结合之后将更有利于进行光学治疗。针对随机激光普遍需要增加额外散射体、发射波长不便调谐,没有生物医学应用等相关问题,本论文利用