论文部分内容阅读
高功率微波源的输出功率难以突破固有的物理限制,通过空间功率相干合成的办法可以实现更高的等效辐射功率。空间功率相干合成对高功率微波天线提出了新的要求,不仅要求具有高功率容量、高辐射增益,还要求天线具有模块化、紧凑的结构设计、低制造成本以及具备波束扫描的能力。现有的高功率微波天线在波束扫描范围、制造成本、结构紧凑化等方面还无法很好满足应用需求。在此背景下,本文提出并研究了两种新型的波束扫描阵列天线。第一种是圆锥扫描分控的阵列天线:利用近场相位转换原理,通过旋转馈源阵面和介质透镜实现了二维波束扫描;第二种是行列扫描分控的阵列天线:该天线基于矩形波导窄边缝隙耦合馈电,以螺旋单元作为辐射单元,通过整列控制旋转螺旋单元的角度,并配合移相器调节每行波导内微波输入的初始相位,实现了整行列控制的二维波束扫描。论文针对以上内容开展了理论分析、数值模拟研究,并对部分结构开展了实验研究。具体工作有:(1)提出并研究了圆锥扫描分控的阵列天线。该阵列天线由馈源阵列天线和介质透镜构成。馈源天线为径向线波导缝隙耦合的螺旋阵列天线,本文详细分析了径向线波导缝隙耦合螺旋阵列天线的工作原理和设计过程,并设计了一直径为600 mm,一共包含17圈同心圆环阵列的天线,并对工作于Ku波段14.25 GHz的设计模型开展了系统的数值模拟研究,数值计算结合理论分析表明:该径向线波导缝隙耦合的螺旋阵列天线的反射低于-20.0 dB,口面效率超过70.0%,偏离法向的最大波束倾角为20°,功率容量达到600 MW。介质透镜采用介质填充椭圆孔阵列,对该透镜的性质进行了数值模拟研究,结果表明该介质透镜辐射波束偏离法向的最大波束倾角为22°,功率容量超过500 MW。并对馈源天线与介质透镜进行了联合仿真。数值计算结果表明:通过同步旋转馈源天线和介质透镜,实现了圆锥扫描分控,二维波束扫描达到空间90°锥角范围,系统反射低于-22.0 dB。(2)提出并研究了基于矩形波导窄边缝隙耦合馈电的直线阵列天线。该直线阵列天线是行列扫描分控阵列天线构成的基础。为了实现一维波束扫描,本文提出利用矩形波导窄边缝隙耦合馈电,利用螺旋单元作为辐射单元,通过旋转螺旋单元的螺旋线结构实现了沿波导宽边平面的一维波束扫描。本文对该直线阵列的设计理论及方法开展了系统的研究,解决了天线反射和波束漂移等问题。设计一工作于X波段9.4 GHz的直线阵列天线,并开展了数值模拟研究。结果表明:该直线阵列的反射低于-25.0 dB,一维纵向波束扫描范围在±30°范围内,副瓣电平低于-10.0 dB,主瓣增益变化低于1.5 dB。为后期组阵需要,设计并加工了一段工作在8.4 GHz的直线阵列天线,辐射单元数目为100个,并对该直线阵列天线进行了实验研究。实验测量结果表明:直线阵列的S参数的测量结果与仿真计算结果吻合,天线反射低于-35.0 dB;通过比较法测量的直线阵列的增益为28.4 dB;实验研究了直线阵列天线的一维波束扫描特性,在±35°范围内,辐射主瓣性能保持较好,增益变化不超过2.5 dB,但是系统交叉极化分量波瓣电平达到-8.0 dB,交叉极化波瓣产生的主要原因是由螺旋线的加工误差造成,并提出了改进的螺旋线结构。初步开展了直线阵列的功率容量的研究,初步验证了其输出25 MW(脉宽约25 ns)的能力。(3)提出并研究了新型旋转调节式波导移相器。该移相器基于矩形波导窄边缝隙电桥,通过将线极化模式转换成圆极化模式,圆极化模式反射波的相位由末端的旋转关节控制。本文详细分析了该旋转调节式波导移相器的特点及工作原理,并进行了仿真验证。数值模拟计算结果表明:该移相器能够实现连续线性相位调节,回波损耗小于0.1%。设计并加工了一波导移相器,该移相器工作于8.4 GHz,实验测量结果表明在非谐振状态下,能够实现线性相位调节,能量传输效率超过95.0%,但是在个别状态存在谐振现象。通过改进移相器结构,利用波导缝隙将谐振模式辐射即可有效抑制器件谐振。(4)提出并研究了行列扫描分控的阵列天线。该阵列天线主要由功分网络、移相器和辐射阵列三部分构成。功率分配网络采用了圆波导TM01-TE01-矩形波导TE10的工作模式,数值模拟结果显示在8.4 GHz实现了一分20路功率均分,插入损耗小于-0.4 dB,功率容量约1.5 GW。并以移相器和辐射波导为基础,搭建了行列扫描分控的阵列天线系统。利用数值模拟方法,建立了一个由20行波导,每行波导上有15个辐射单元构成的20×15矩形栅格阵列的简化模型,系统研究了辐射阵列的二维波束扫描能力。数值模拟结果显示:该行列扫描分控阵列天线在垂直于波导轴向的平面内,能够实现±35°范围的波束扫描,副瓣电平低于-12.0 dB,增益变化小于2.0 dB;在垂直于波导轴线的平面内能够实现±30°范围的波束扫描,副瓣电平低于-10.0 dB,增益变化小于1.5 dB。