论文部分内容阅读
河钢集团唐山分公司在冶炼超低氧铝脱氧钢时遇到了夹杂物控制、氧氮控制及水口结瘤等问题,主要由精炼及连铸过程的钢液二次氧化引起,尤其是中间包的钢液二次氧化行为。中间包是钢产品冶炼过程中的最后步骤容器,也是提高钢洁净度的最终环节,因此对于钢的质量控制有非常重要的意义。然而,由于耐火材料的侵蚀脱落,覆盖剂卷渣,以及钢水的二次氧化会使钢液受到二次污染,成为提高钢洁净度的限制性环节。本研究针对氧分压及中间包覆盖剂成分对铝脱氧镇静钢的二次氧化影响,研究了氧分压及中间包覆盖剂成分对钢液的二次氧化行为及机理,并研究了不同氧分压和不同覆盖剂成分含量对钢中非金属夹杂物的特征及尺寸的影响,得到如下成果:实验值与理论计算值结合得到氧在覆盖剂层中的质量扩散系数为D=4.87cm2/s。随着氧分压增加,钢水受到二次氧化程度加剧,钢中溶解氧增加;氧在覆盖剂层中主要以物理方式进行传输,而化学传输量不到总传输量的10%;原生脱氧夹杂颗粒尺寸较大(Al2O3夹杂),原生脱氧夹杂易聚集长大且上浮被覆盖剂所吸收;覆盖剂氧化夹杂易与覆盖剂中SiO2结合产生硅铝酸盐(FeO·SiO2·Al2O3),尺寸相对较大,且随着氧分压增加,尺寸进一步增大,硅铝酸盐聚集长大上浮被覆盖剂吸收。基于高温实验认为小于1 μm的细小夹杂物主要由空气氧化钢液产生。在钢中含有微量的大于5μm的镁铝尖晶石(MgO·Al2O3)夹杂物,随着氧分压进一步增大,镁铝尖晶石夹杂物会被FeO包裹,尺寸进一步增大。覆盖剂中所含Fe2O3能够直接接触钢液,绕过了空气通过覆盖剂对钢水二次氧化的限制性环节,导致钢中脱氧元素将会在较短时间内与其发生氧化反应,在钢中产生大量的氧化物夹杂从而使得钢水受到污染。在氧分压一定时,覆盖剂中Fe2O3会加速钢液的二次氧化;基于高温实验结果,钢液中的[Al]元素能够快速达到平衡状态,并且随着中间包覆盖剂中的(Al2O3)活度逐渐增大,[Al]活度开始逐渐减小。而在同样实验条件下,由于钢水中的[Si]元素氧化性比较小,随着气氛中的氧分压逐渐增加,反应开始到达平衡状态。随着中间包覆盖剂中(SiO2)的活度逐渐增加,覆盖剂的氧化性开始增大,使得钢水中[Si]元素的活度产生进一步增加,反应达到平衡的速率也逐渐增加。通过实验研究了覆盖剂中Cr2O3对铝脱氧钢的二次氧化的影响。研究发现中间包覆盖剂中的Cr2O3会对钢液造成氧化,几乎中间包覆盖剂中所有的Cr2O3都会被钢液还原。钢中的总氧含量、铝损和中间包覆盖剂中的FeO含量都会因为Cr2O3含量的增加而增加。在氧分压为0时,Cr2O3对钢液的二次氧化比同等含量的SiO2严重且Cr2O3对钢液的氧化会抑制SiO2对钢液的氧化,在氧分压为10KPa时,钢中的Si和Cr都会发生二次氧化且Si的二次氧化比Cr剧烈的多,并且随着保温时间的延长,覆盖剂中的Cr2O3、SiO2和FeO都会再次发生二次氧化向钢液中传氧。随着中间包覆盖剂中Cr203含量的上升,钢中的夹杂物分布密度减小,平均尺寸升高,即容易生成大尺寸的A1203夹杂。通过对比发现中间包覆盖剂二次氧化形成的夹杂物的密度和尺寸取决于钢中的脱氧元素。Cr203对钢液造成二次氧化的方式有两种,一种是被钢中的脱氧元素还原,一种是自扩散。当钢中存在酸溶A1时,Cr2O3会同时以两种方式传氧,其中A1还原占90%以上,自扩散占10%以下。对于含有5%和10%Cr2O3的中间包覆盖剂,Al还原Cr203的反应主要发生在加入中间包覆盖剂后2min和3min内。而对于含有10%Cr2O3的中间包覆盖剂,A1还原Cr2O3的反应速率在加入中间包覆盖粉末后2min内达到最大值。覆盖剂中加入CaCO3后钢中夹杂物数量明显降低,尺寸分布改善为小尺寸比例增大,显著改善钢液二次氧化行为;CaCO3分解可产生CaO可有效改善渣层性能,CO2可有效降低覆盖剂表面氧分压,减轻浇注过程中钢液的二次氧化;在实验室条件下,分解产生的CO2气体扩散时间约为25分钟,并获得气体扩散时间与温度和扩散距离的关系,为实际生产时加入CaC03的最优时间间隔计算提供理论依据;通过工业实践验证了本论文抑制中间包二次氧化现象的理论。