论文部分内容阅读
饮用水氯化消毒能够杀灭水体中的有害病原微生物,保障饮用水安全。然而,氯化消毒产生的三卤甲烷(THMs)、卤代乙酸(HAAs)、卤代乙腈(HANs)和致诱变化合物(MX)等消毒副产物(DBPs)及前体物的潜在毒性成为威胁饮用水安全的关键问题。通常,天然有机质是饮用水DBPs前体物的主要来源,但对于珠三角地区而言,水体污染导致的藻类有机质是DBPs前体物的主要来源。此外,伴随着台风、暴雨以及港口疏浚等自然和人为因素,吸附在底泥的有机质会重新悬浮进入水体,成为DBPs前体物的另一重要来源。而藻类及底泥有机质氯化后能够生成三卤甲烷、卤乙酸和卤乙腈等毒性DBPs,长期暴露于DBPs可能会致癌。DPBs前体物多环芳烃(PAHs)还能够增加患心血管疾病的风险,威胁人体健康。而目前为止,珠三角地区氯化有机物的DBPs特征及其与PAHs的毒性机制尚不完全清楚,因此有必要对珠三角地区水体氯化藻类和底泥有机质进行系统研究。本论文针对上述问题,主要开展以下5个方面的研究:(1)珠三角地区藻类有机质氯化消毒后的DBPs特征研究通过气相色谱法分析了绿藻(Chlorella sp.)有机质氯化后三卤甲烷(三氯甲烷)、卤乙腈(二氯乙腈和三氯乙腈)、卤乙酸(二氯乙酸和三氯乙酸)以及多环芳烃和氯化多环芳烃的含量,并与已有报道的底泥有机质氯化DBPs特征数据进行比较,发现珠三角地区氯化藻类有机质能够生成二氯乙腈和三氯乙腈,但氯化底泥有机质只生成二氯乙腈,提示藻类有机质可能是珠三角地区饮用水中三氯乙腈前体物的主要来源。此外,基于底泥有机质氯化前后都存在三氯甲烷,以及藻类有机质中不含三氯甲烷及氯化后检测到相对低含量的三氯甲烷,提示氯化藻类有机质虽然能生成三氯甲烷,但被三氯甲烷污染的底泥是其前体物的主要贡献者。另外,我们在氯化前后藻类有机质中均没有检测到多环芳烃和氯化多环芳烃,表明藻类有机质不是消毒水中氯化多环芳烃的前体物和来源,这对珠三角地区饮用水源管理以及自来水处理工艺的优化具有重要意义。(2)珠三角地区藻类和底泥有机质氯化消毒后的毒性特征通过SOS显色实验和彗星实验研究了氯化前后藻类及底泥有机质对Caco-2细胞的毒性作用,实验结果发现氯化能够增加藻类和底泥有机质的遗传毒性和DNA损伤作用,表明与前体物相比,氯化DBPs具有较大毒性,其中底泥有机质氯化后对Caco-2细胞DNA损伤较大,提示二氯乙腈可能发挥了重要作用,而藻类有机质氯化后诱导较高的SOS IP,提示二氯乙酸和三氯乙腈可能是较大贡献者,这为珠三角地区水源有机质氯化毒性的深入研究奠定了基础。(3)藻类和底泥有机质氯化前后对Caco-2细胞基因表达谱的影响藻类和底泥有机质氯化DBPs种类多,传统的检测方法难以全面了解他们的毒性作用。转录组学可以基于全基因组表达谱较全面的分析藻类和底泥有机质及其氯化DBPs的毒性。研究发现底泥有机质可诱导Caco-2细胞产生涉及细胞信号传导、信号调控等多个生物学过程相关基因的表达,但氯化后这些生物学过程完全被抑制,并出现包括抗原处理和递呈在内的2个生物学过程,提示氯化后底泥有机质虽然在单一终点检测方法中表现了较强的毒性,但对Caco-2细胞的总体影响可能降低。对于藻类有机质,其诱导的差异表达基因(DEGs)集中在免疫反应,但氯化后大部分DEGs被逆转,并出现了一系列特异的DEGs,这些DEGs主要集中在转录调节相关的多种生物学过程,提示藻类有机质氯化后产生的DBPs混合物增加了对Caco-2细胞的毒性。转录组学分析有助于深入了解氯化前后藻类和底泥有机质的毒性,能够为氯化DBPs的毒性评价提供更广的参考机制。(4)CYP1A1和CYP1B1是氯化藻类有机物DBPs的潜在生物标志物珠三角地区DBPs前体物氯化消毒的检测尚缺乏靶标。我们基于藻类和底泥有机物转录组学数据,通过生物信息学分析,预测了藻类有机物氯化前后诱导的DEGs的上游调节因子,发现CYP1A1、CYP1B1是上游调节因子的共同靶标,而在氯化底泥有机物中则没有。通过qPCR实验验证以及整合已有DBPs或环境压力的有关报道数据,我们发现氯化藻类有机物的CYP1A1和CYP1B1表达特异性的上调。我们的研究表明,这两个CYP1基因可能作为藻类有机物氯化DBPs的潜在新的生物标志物,这将有助于珠三角地区消毒水DBPs的检测,并进一步监测饮用水安全。(5)DBPs前体物-PAH及其代谢物对人干细胞分化心肌细胞(hESC-CMs)的毒性及机制研究基于人胚胎干细胞分化心肌细胞研究了DBPs前体物苯并[a]芘和PAHs体内代谢检测标志物1-羟基芘对心肌细胞的毒性作用。发现苯并[a]芘和1-羟基芘不影响hESC-CMs活性,但能诱导ROS增加以及DNA损伤,此外,苯并[a]芘还能促进线粒体促凋亡基因高表达,这些结果表明氧化应激和DNA损伤事件是苯并[a]芘和1-羟基芘损伤hESC-CMs的关键,这在一定程度上揭示了DBPs前体物多环芳烃及其代谢物导致心脏功能障碍的分子机制。