基于群体智能的多阈值图像分割的研究与应用

来源 :福州大学 | 被引量 : 0次 | 上传用户:z987z654z123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
图像分割是数字图像处理的关键技术之一,随着生活中各个研究领域对数字图像处理技术需求地不断增加,图像分割问题成为一个越来越重要的研究方向。多阈值分割是图像分割中的一种重要方法,在近些年取得了较多的成果,并广泛地应用在遥感图像、医学图像的识别中。在图像的多阈值分割中,选取合适的阈值尤为关键,但是当传统的单阈值图像分割扩展到多阈值图像分割用遍历法计算时复杂度高,效率较低。为了更加有效地对多阈值进行选取,结合了基于群体智能的方法,利用群体智能方法对图像的多阈值分割进一步地优化。本文主要的工作如下:(1)研究了人工蜂群算法中的采蜜蜂的采蜜机制与侦查蜂的蜜源更新机制,提出了一种基于透镜成像学习和局部开采增强的人工蜂群算法(LLABC),该算法设计了基于透镜成像反向学习的侦查蜂寻找新蜜源策略,侦查蜂可以利用历史信息反向学习寻找得到新的蜜源位置,加强了侦查蜂的全局搜索能力。并且设计了多只采蜜蜂对应一个蜜源的改进策略,由于一个蜜源可以由多只采蜜蜂进行局部的开采,增强了采蜜蜂的局部开采能力。在函数优化问题中,对比其它改进人工蜂群算法,改进后的LLABC算法可以很好地找到全局最优解。把LLABC算法应用于图像的多级阈值分割问题中,通过实验分析可知,改进后的人工蜂群算法能够有效地分割图像,找到近似全局最佳的分割阈值。(2)将粒子群算法(PSO)的粒子更新策略引入到灰狼优化算法(GWO)的种群更新中,提出了基于佳点集的混合PSOGWO算法。在算法PSOGWO中,使用了佳点集的策略对灰狼种群进行初始化。并采用三角函数的方法使灰狼优化算法中参数a从初始值2非线性减小到0,可以更好地平衡灰狼优化算法的全局搜索能力和局部搜索能力。同时对灰狼种群的更新公式进行改进,将获得的前三个代表最佳解的a、b、d狼的位置加上各自适应度的带权系数。并且针对灰狼优化在图像多阈值分割的后期收敛速度较慢的问题,结合PSO思想,将历史最优灰狼指引的策略增加到灰狼的更新方程中,从而加快了算法的收敛速度。在函数优化问题中,对比其它群体智能算法,基于佳点集的混合PSOGWO算法可以很好的找到函数的最优解。把PSOGWO算法应用到图像的多级阈值分割问题中,实验结果表明,PSOGWO算法在能保证全局收敛的前提下,得到的适应度值有所提高,并且能更快地找到近似最优阈值。本文提出的算法还应用于中国山水画的多阈值分割问题,取得了较好的效果。
其他文献
当前热点的深度隐写术可以把图像秘密信息隐藏到尺寸相同的载体图像中,具有隐写率高等特性,常被特定组织用作秘密通信。主动隐写分析术能够去除所隐藏的秘密信息,一定程度阻止深度隐写信息通过互联网进行非法或恶意传输。文档图像具有大量的文字信息,其作为深度隐写秘密信息能够在秘密通信中传递大量有效信息,具有泄漏机密信息的安全隐患,然而目前并没有相关研究专门针对文档图像作为秘密信息的深度隐写去除方法,于是本文提出
学位
近年来,深度神经网络在图像识别领域取得了巨大的成功。然而研究发现,深度神经网络极易受到对抗样本的欺骗。攻击者仅通过在图片上添加微小的、人眼不可见的扰动,就可以让深度神经网络对该图片做出错误分类,从而达成一些非法的目的。因此,研究对抗样本防御算法对于保障深度神经网络在实际应用中的安全十分重要。针对对抗样本的防御问题,本文主要研究工作如下:(1)对抗攻击方法性能评估。首先,本文提出从对抗样本的图像质量
学位
随着集成电路的制造工艺步入纳米时代,芯片中的元件越来越多,使得布线的难度越来越高。因此,布线已成为超大规模集成电路物理设计中最亟待解决的问题之一。通常,布线分为全局布线和详细布线两个阶段。全局布线作为布线的第一阶段,上承详细布局,下启详细布线。一个高效的全局布线算法能把拥塞信息反馈给布局器,让布局器能摆放出高可布线性的布局方案。另一方面,一个高性能的全局布线算法能有效地满足设计规范,让详细布线的负
学位
近年来,随着移动互联网的蓬勃发展以及智能手机的快速普及,Android应用的数量飞速增长。应用内功能众多,这些功能不仅能满足应用使用者的需求,还能被进一步发布成API用于外部调用。例如,第三方应用使用微信的分享API发布朋友圈。但是将应用功能封装为API的过程较为繁琐,传统的API封装方式是针对指定的功能模块,通过代码重构发布其API,这种方式不但会增加开发者的工作量,而且难以应用于第三方应用的A
学位
随着计算机技术、多媒体技术以及网络通讯技术的快速发展,数字图像处理的相关技术被广泛地应用于人类社会生活的各个方面。视觉是人类获取外界信息的主要途径之一。在现实场景中,受限于图像传输带宽和存储成本等影响,在传输、存储过程中往往不能将图像完整的保存下来,需要对图像进行不同程度的压缩,进而导致所获图像质量受到影响。特别地,近几年随着移动互联网的快速发展,越来越多的用户在移动设备上观看图像,受限于移动设备
学位
情感分析是指挖掘和分析评论文本中情感信息的过程。方面级情感分析是情感分析的子任务,旨在预测评论目标的具体方面所对应的情感极性。本文主要针对现有的方面级情感分析模型存在的方面信息丢失、无法利用句法依存关系等问题开展研究,主要研究内容如下:记忆网络虽然能够有效地长期存储文本中的信息,但是无法充分利用评论文本中的远距离语义依赖关系,导致语义信息丢失,进而影响情感极性的预测。同时,在注意力权重的计算过程中
学位
图像美学质量评价是一个富有意义且颇具挑战的任务,近年来越来越多的工作将深度卷积网络引入到美学评价任务中,探索图像美学的影响因素,并获得了不错的评价性能。但是,大多数工作都忽略了图像风格和美学评论对图像美学评价的影响。因此,本文先提出一个基于风格特征学习的多领域图像美学质量评价方法,学习包含图像风格在内的多个专业的领域知识作为图像的美学语义特征。然后,研究多模态的学习机制,将学习视觉特征的单模态深度
学位
在当今信息化时代中,各种各样的复杂系统,如电力系统、交通运输系统和蛋白质交互系统等,在人们的生活中扮演着不可或缺的角色。为了便于研究复杂系统的性质,人们通常将其看成是由一个个子系统连接而成,然后将子系统抽象为一个节点,子系统间的连接抽象为一条边,复杂系统则被简化为复杂网络。复杂网络的一大重要特性在于节点的分布不是随机的,而是呈现出一定的聚集性,人们将一群连接紧密的节点称为社区结构。社区发现的目的在
学位
近年来城市轨道交通在交通运输体系中扮演着越来越重要的角色,越来越多的人们选择城市轨道交通作为出行的主要方式,在给人们的出行带来便利的同时,提高服务质量成为轨道交通行业的中心问题,而优化地铁时刻表是提高轨道交通服务质量的重要手段。为此,我们必须结合城市客流需求与地铁运输能力等实际情况,进行地铁时刻表优化,满足人们的出行需求,缓解城市交通压力。本文以福州地铁为研究对象,完成了以下工作内容:第一,本文研
学位
随着社交媒体的发展和移动设备的普及,在社交媒体上发布谣言和传播谣言变得越来越容易。谣言泛滥可能会引起公众恐慌和对个人的负面影响,所以谣言的自动检测十分必要。传统的检测方法主要基于特征工程,采用人工选择的用户特征、文本内容以及传播模式来训练监督分类器。但这些方法耗时耗力,而且人工选择的特征通常缺乏从谣言的传播和散布中提取的深层语义信息。而深度学习方法可以从传播路径或网络中挖掘更高级别的表征。但它们也
学位