论文部分内容阅读
化石燃料高效利用是缓解世界及我国能源危机的重要途径,热力发电和冶金行业是化石燃料的主要消耗领域,矿物原料入炉含湿量是影响冶金产品品质、电站锅炉及冶金高炉安全运行和化石燃料能量利用效率的重要因素。微波技术以其湿分输运时间短和能量利用率高等优点逐渐得到推广和应用。本文系统提出微波场中多损耗机制作用下典型含湿矿物类多孔介质内部耦合传输机理的分析方法,基于非平衡态热力学,建立描述微波场中多损耗机制作用下典型含湿矿物类多孔介质内部热湿耦合传输过程的动力学模型,进一步揭示耦合传递机制。通过实验和理论探究微波场中介电和介电/磁复损耗机制作用下典型矿物类多孔介质薄层内部热湿耦合输运机理,结果表明:Na2C03、Na2S04和粉煤灰等添加剂的加入均可有效促进介电损耗机制下褐煤薄层内部湿分传输,降低湿分迁移表观活化能,增大物料内部平均温度,改善温度分布均匀性,提高热湿迁移过程中能效,其中Na2C03效果最为显著。与介电损耗机制下褐煤薄层相比,介电/磁复损耗机制下赤铁矿薄层平均能效增大10倍左右。基于实验和理论分析微波场中介电和介电/磁复损耗机制作用下成型球状矿物类多孔介质内部热质耦合传递机理,结果表明:微波功率231-700W,介电损耗机制下褐煤球有效湿份扩散系数范围为6.72×10-9-5.92×10-8 m2-1;当微波功率为539和700 W时,热湿迁移过程中有泵效应产生。微波功率119-700 W,介电/磁复损耗机制下球团矿有效湿份扩散系数范围为1.22×10-8-9.25×10-8m2s-1;热湿迁移过程中,该类样品内发生破裂现象或出现裂缝,断口或裂缝沿球体周向方向分布;经热风对流预处理后其机械失效载荷为7.5 MPa,微波预处理后抗压失效特性增强,机械失效载荷为13.2-14.0 MPa。根据实验和理论分析热风对流条件下典型含湿矿物类多孔介质内部输运机制,结果表明,风温和风速的提高可有效促进热湿迁移,风速0.5-2.0 m s-1、风温100-160℃时,褐煤和赤铁矿薄层有效湿份扩散系数范围为5.10×10-9-4.06×10-8m2 s-1;降速段平均表面传热系数范围为3.41-16.62 W m-2 K-1。基于非平衡态热力学所建立的动力学模型,可较为准确的预测微波场中介电损耗机制下褐煤和介电/磁复合损耗机制下赤铁矿内部热质耦合传输特性。计算结果表明:微波场作用下薄层内部无泵效应产生,褐煤球和球团矿湿分逐渐向电磁场强度较弱区域(4×102-103Vm-1,4-10A m-1)迁移,有泵效应产生。电磁场强度较强区域(103-6×103Vm-1,10-20 Am-1),湿份迁移所引起的热流阻碍传热进行,电磁场强度较弱区域(4X 102-103v m-1,4-10 A m-1),湿分迁移在初始阶段促进传热进行,而在其他阶段阻碍传热。热风对流辅助微波可促进湿分迁移,改善温度分布均匀性,与纯微波条件相比,热风对流辅助微波作用下物料内部温度分布均匀性系数可降低至3.6%-4%。