论文部分内容阅读
微流控技术是把生物、化学、医学分析过程的样品制备、反应、分离、检测等基本操作集成到一块极小的芯片上,并对微量液体进行操控的科学技术,具有样品用量少、分析效率高、便携性好、成本低、精度高和灵敏度高等优点。微流控技术中,准确地实现微量液体的在线密度检测非常重要,在以生物医疗、化工和食品加工为典型代表的众多领域中具有广泛应用。但是,目前专门的微流控在线液体密度计的报导尚不多见,大多是基于悬臂梁结构和硅微管等谐振器的谐振式密度计。而悬臂梁一直浸入在液体中会导致密度传感器的性能下降,硅微管式密度计的制备工艺复杂、成本高而且测量结果容易受到液体中气泡的影响。精度高、成本低的微型在线液体密度计正成为人们关注的热点。本论文中创新性地采用热发泡法制备了球形玻璃谐振器,利用填充不同液体时球形玻璃谐振器的谐振频率发生迁移的特点,研究了其在液体密度在线检测领域的应用。首先,利用ANSYS分析了球形玻璃谐振器的振动特性以及其作为液体密度检测计的可行性。结果表明:球形玻璃谐振器顶部区域在上下振动模态时竖直方向的位移比较明显,故利用多普勒测振仪测振时,应该选择谐振器顶部区域并且激励其上下振动模态来进行振动测试。另外,球形玻璃谐振器中液体密度的变化会影响其谐振频率。液体密度增大时,球形玻璃谐振器的谐振频率减小。液体密度变化较小时,液体密度增量与谐振频率增量呈现近似的线性关系。其次,基于传统热成型玻璃加工工艺,研究了球形玻璃谐振器的制备方法——热发泡法,成功制备了以球形玻璃谐振器及微流道为结构特征的超声微流控芯片。结果表明,热发泡法制备的球形玻璃谐振器具备结构可控、壁表光滑、能够实现圆片级制备且均匀性较好等优点。最后,利用多普勒测振仪对填充不同密度的葡萄糖溶液的超声微流控芯片进行了振动特性测试分析。结果表明,芯片内填充不同密度的液体时,球形玻璃谐振器的谐振频率会发生一定偏移;液体密度增大时,球形玻璃谐振器的谐振频率减小;液体密度变化较小时,液体密度变化量与谐振频率变化量呈现近似的线性关系。实验结果与理论模拟符合良好。本论文中研究的片上球形玻璃谐振器在微流控液体密度在线检测上具有潜在的应用。