矩阵特征问题块子空间迭代法的随机加速

来源 :上海财经大学 | 被引量 : 0次 | 上传用户:jwk000
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
矩阵特征值问题Ax=λx不仅在各类理论研究中起到关键作用,也在实际应用领域中有所涉及。其中Krylov子空间方法如Arnoldi算法、完全正交算法(FOM)、广义极小残量算法(GMRES)等都广泛应用于数值分析的各个领域中。作为降维投影方法,Krylov子空间计算量较小且效果较精确。但它依旧存在着损失正交性,难以应对密集或者多重特征值,效果依赖于初始矩阵,残差下降出现停滞或者震荡等问题。在多数的改良方法着眼于Krylov算法内部结构的研究时,本文结合随机算法,在块Krylov子空间的初始矩阵选择上进行了调整,通过寻找给定大规模稀疏矩阵的近似值域或特征向量子空间,构造适当的初始迭代阵,代入Krylov子空间迭代法算出部分特征对。对于大规模稀疏矩阵的特征对的寻找,应用块Krylov子空间迭代法不仅会简化算法过程也能更好地处理多重特征值问题。在此基础上,着重研究适用于对称矩阵的块Lanczos算法和适用于非对称矩阵的块Jacobi-Davidson算法,并通过模仿非块Jacobi-Davidson算法矫正方程的求导过程,给出了分块形式的矫正方程的推导流程。在针对块Lanczos的数值实验中,通过比较分析随机子空间迭代(RSI)、QR One Pass(QROP)及两者结合的RSIOP这三种随机算法应用于初始矩阵的选取后,对于极端特征对求取结果的影响,总结了它们的各自优缺点。得到了RSI和RSIOP在提升算法精度上更有帮助,而QROP虽然对于结果的精度提升不大,但所需消耗的时间更为短,适合于上百万阶矩阵的快速求解。还分析了初始矩阵列数选取对于精度的影响,发现了随着列数的增加,改良的效果也变得更好。在针对块Jacobi-Davidson的数值实验中,通过适用于非对称矩阵的RSIOP,在减少循环次数的前提下,提高了精度。并选取了两个特征值分布不同的实例矩阵,让改良了初始矩阵的块Jacobi-Davdison算法与块QR迭代和块幂法相互比较了优劣性,发现了在矩阵的前端极端特征值密集且下降缓慢时,运用随机算法选取更加有优势。而在特征向量的求取上随机算法有着更为明显的改进效果,不会受矩阵性质的太多约束。
其他文献
反散射问题作为数学物理反问题中较为经典的一类反问题,近些年来日益受到学术界的关注,其物理背景来源于对声波运动的研究。Helmholtz方程的建立对声波的研究产生了深刻的影响,于是对各类Helmholtz方程的求解,以及解的性质的研究成为了反散射问题的核心之一。本文主要研究了由球面某一开集上带有随机误差的观测数据来反演源项参数的反问题。首先,用Tikhonov正则化的思想,从带有随机误差的观测数据得
学位
迁移学习主要是通过学习源域中带标签的数据对目标域中无标签的数据进行识别分类。目前针对迁移学习,已有很多种不同的解决方案,如基于特征空间和标签空间是否同构,可以将迁移学习分为同构迁移学习和异构迁移学习。基于迁移学习方法中迁移知识的形式来看,也可分为:基于样本、基于特征、基于模型、基于关系四种迁移学习方法。EasyTL方法是一种最近(2019)提出的方法,其建立的前提是特征空间和标签空间相同,但边际分
学位
本文主要研究了随机波动率模型下Switch Corridor方差衍生产品的定价问题。与传统方差产品不同,Switch Corridor方差产品是基于金融市场中的两类标的资产,可用于对冲跨市场的波动风险,可以帮助投资者更好地管理风险,具有重要的市场地位。近年来,Switch Corridor方差衍生品在结构化产品市场中得到了广泛的交易,并于2016年获得了“亚洲风险投资年度最佳交易奖”。由于该产品结
学位
本文从Heston随机波动率模型下的亚式期权定价问题出发,首先通过布朗运动正交变换,从而消除空间方向的二阶交叉导数项,避免了离散交叉导数项导致线性方程组非对称的不足之处。其次基于一般的算子分裂算法,得到三个可进行快速计算的一维问题,并借助分裂后的其中一个偏微分方程有解析解的特征,提出了将解析方法与数值方法相结合的半离散算子分裂算法格式,简化了计算过程。结合多项式插值和无穷区间上的数值积分,大幅提高
学位
概念教学是数学教学的重要组成部分,在数学教学实践中具有举足轻重的作用。本文基于问题驱动视角,详细探讨问题驱动教学模式在高中数学概念教学中的实际价值与存在问题,从“为什么”“是什么”“有何用”三个层面梳理问题驱动教学现状,继而针对性地引导学生正确理解数学概念,掌握其学习技巧,帮助学生奠定扎实的数学概念学习基础,最终培养学生探究、求新、求知的学习品质。
期刊
近年来,在“大众创新、万众创业”政策的号召下,全国掀起了一股创新创业热潮,大量中小企业拔地而起。中小企业占据了我国约70%的GDP,提供了我国约80%的工作岗位,其发展成为了我国经济全面、科学、高质量发展的关键所在。由于中小企业通常自主经营、自负盈亏,且融资渠道狭窄,风险抵御能力有限,如何适应当下经济发展方式的迅速转变并持续、稳定、健康地发展壮大,成为了我国中小企业一个无法逃避的问题。为了解决以资
学位
Anderson加速[5]是一种加速不动点迭代的有效方法.本文对含有混合参数β的Anderson加速进行研究,推广了β=1特定条件下的一些结论:通过对Anderson加速算法中的最小二乘问题进行无约束转化,得到了β在一般取值条件下的无约束的Anderson(mk,β)加速算法和Anderson(mk,β)加速分裂迭代算法;基于线性方程问题,本文给出了 Anderson(mk,β)算法与GMRES方
学位
自19世纪德国数学家August F.M(?)bius[29]引入了平面中的M(?)bius变换以来,在复分析中关于M(?)bius变换的性质和相关定理一直是重要的研究方向之一,并且在一个多世纪的发展过程中得到了很多重要的结论.相对于复数C,Yaglom[41]的提出了经典复数的推广――分离复数R1,1,随后吸引了许多数学家对分离复数中相关问题的关注,但是有关分离复数中M(?)bius变换的性质和
学位
卷积神经网络近年来应用广泛,目前很多图像分类任务的最好成绩都是通过卷积神经网络取得。本文研究重点为卷积神经网络中的池化层。池化层对于提升网络的性能具有重要意义,且除了能应用在卷积神经网络中,还可以应用于深度学习中的其他网络结构。传统的池化方式为最大池化和均值池化,但是这两种方法对于激活值的多样性和显著性不能达到一个很好的平衡,并且会在池化过程中造成信息的损失。基于此有许多改进的池化方法被提出。这些
学位
Black和Scholes在1973年创立的Black-Scholes期权定价模型是当代金融理论里最为重要的成果之一,但由于该模型存在特定的假设条件,因此在一些情况下得到的金融市场理论价格与实际并不相符,在应用中有很多局限。研究表明,如果将Black-Scholes模型应用于违约概率估计,考虑标的资产S为公司的价值,对公司债u(t,S)进行定价,必须考虑漂移率μ和无风险利率r之间存在称为风险溢价的
学位