【摘 要】
:
硼化物(ZrB2、HfB2等)、碳化物(SiC、Zr C等)及其复合材料(ZrB2/SiC/Zr C)是优异的超高温陶瓷材料,在太空探索、新一代战略武器、超高速飞行器等研究领域发展前景广阔,对促进国家航天事业及增强国防战略防务具有重大的意义。三元层状硼化物(MAB)是硼化物材料研究领域的热点,其晶体结构与MAX相材料相似,兼具陶瓷和金属的优异性能,损伤容限性高、易于加工,可作为复合材料的增强相,改
论文部分内容阅读
硼化物(ZrB2、HfB2等)、碳化物(SiC、Zr C等)及其复合材料(ZrB2/SiC/Zr C)是优异的超高温陶瓷材料,在太空探索、新一代战略武器、超高速飞行器等研究领域发展前景广阔,对促进国家航天事业及增强国防战略防务具有重大的意义。三元层状硼化物(MAB)是硼化物材料研究领域的热点,其晶体结构与MAX相材料相似,兼具陶瓷和金属的优异性能,损伤容限性高、易于加工,可作为复合材料的增强相,改善材料的导电、导热性能。目前对MAB材料的研究主要集中在热压法制备块体材料,块材机械性能、磁性研究,以及理论计算等方面,对高纯粉体合成、复合材料制备及性能的研究较为欠缺。ZrB2陶瓷是优异的超高温结构陶瓷材料之一,但其高熔点(>2000℃)、强共价键、低体积扩散速率等特性,造成烧结过程能耗大、对设备要求高;且制品致密度较低,影响其结构性能。为获得性能优异的ZrB2陶瓷材料,需从制备技术优化、烧结助剂筛选等方面入手。本工作涉及如下:(1)发展了一种固相反应技术,合成纯度较高的Fe2AlB2粉体。研究反应条件,如原料比例、压片、反应温度等,对产物的影响规律。发现当原料比例为1.5Al/2Fe/2B时,经过150 MPa冷等静压处理,1150℃下合成的粉体纯度较高。X射线衍射分析表明产物中Fe2AlB2为主相,含有少量Al2O3和Al13Fe4杂质。进一步采用盐酸与氢氧化钠溶液进行清洗纯化,对洗液浓度、浸渍时间、处理温度等因素进行研究。发现1.0mol/L氢氧化钠溶液,室温超声振荡处理20分钟,效果最好,可有效去除样品中杂质,且Fe2AlB2没有明显分解,无Fe B残留。与现有放电等离子烧结、热压烧结以及电弧熔融合成方法相比,本方法显著降低了生产成本,适用于Fe2AlB2材料的规模化生产,可有效推进其进一步应用。(2)选用自制Fe2AlB2粉体为添加相,首次制备ZrB2-Fe2AlB2复合材料,对其制备条件、物相组成、微观结构、机械性能进行了系统的研究。较低温度下通过外场辅助烧结(热压烧结,1250℃,35 MPa,120 min)获得致密度高、性能良好的硼化锆陶瓷,样品相对密度大于95%,最高维氏硬度22.3±0.3 GPa,最高断裂韧性5.78±0.5 MPa·m1/2。通过X射线衍射分析物相,以及扫描电镜观测样品的微观形貌,发现层状Fe2AlB2在热压烧结过程中发生分解,剥离Al液相有效促进复合陶瓷传质,实现致密化。同时分解后生成的Fe B与未分解的Fe2AlB2均匀分布在ZrB2晶粒交界处,起到了弥散增韧与晶粒细化的作用(随着Fe2AlB2添加量的增加,晶粒粒径逐步从数十微米降至数微米),在多种效应协同作用下,复合陶瓷材料的综合性能有了明显提高。本工作填补了现有硼化物陶瓷研究领域的空白,对后续新型MAB相材料规模化生产、超高温陶瓷性能优化具有很好的推动作用。
其他文献
相变材料(PCMs)因为具有较高的储能密度和温度可调控的优点,在太阳能利用、节能建筑、航空航天、电子器件等领域具有重要的应用。聚乙二醇(PEG)是最常见的有机固-液相变材料,但是PEG在应用过程中存在易泄露以及导热系数低等问题。PEG在固液相变过程中产生的液体泄漏给PEG的应用带来了极大的不便,同时较低的导热系数会直接导致相变材料的相变储放热反应时间长,储能利用率低,容易产生过热,严重影响相变材料
随着人类社会工业的发展,对工业中所使用的的机器要求日益增高,对机器润滑油的使用环境愈发苛刻。普通的矿物油和天然油已经无法满足现代工业的润滑要求,合成润滑油因此迅速发展起来。其中聚苯醚类润滑油因具有优异的性能而广泛使用,但其倾点较高、价格相对昂贵,因而应用受到一定限制。将二苯醚接上烷基链合成的基础油,不但可提升其物理性质,且可降低其价格,不过,目前的研究存在合成过程复杂、碳数与其性质关系规律不明确等
双氰基二苯乙烯类、蒽酮类、荧光素、四苯乙烯类等有机发光材料的相继出现,持续推动着有机发光材料的不断向前发展。聚集诱导发光(AIE)材料,有别于传统有机荧光材料在聚集状态的荧光猝灭(ACQ)现象,因其特有的较高摩尔吸光系数、相对荧光量子产率高、生物相容性好、化学稳定性高、价格低廉等特点而备受关注。AIE材料现已被广泛应用于生物医学、光催化、有机光伏材料、液晶等研究领域。近年来,尤其在合成具有AIE性
海洋生物污损一直是人类进行海洋资源开发活动进程中的一个难题。为了解决这一难题,人们发展了许多防污技术。其中,涂装海洋防污涂料是最经济有效的方法。防污涂料中起到防污作用的就是防污剂。目前Cu2O是市面上的主流防污剂,但是从生态环境角度考虑,Cu2O并不是长期理想的选择。银纳米颗粒(AgNPs)以其长期的抗菌活性以及相对较低的环境风险,被认为是一种有前途的防污剂。目前文献已经报道了基于AgNPs的防污
随着纳米技术与生物医学的结合,纳米材料被广泛地运用到生物医学诊断和治疗中。表面增强拉曼光谱(SERS)技术利用纳米材料作为检测基底,极大的增强了拉曼信号的强度,能够有效降低检测极限,并且具有特别适合液态物质检测等优势;因此,在良恶性肿瘤诊断区分中得到广泛的研究应用。研究表明生物样品(尤其是病理组织、体液等)的拉曼光谱谱峰丰富,但反映不同病理状态的拉曼光谱整体谱型,主要谱峰位置的相似性大于差异性,表
非线性光学(NLO)晶体材料作为固态激光系统的核心器件,在激光相关的科学技术领域中占据着重要地位。含π键的阴离子基团的化合物因其具有优秀的非线性光学性能而备受关注。在这篇论文中,我们对硼酸盐和过氧化物等含π键的阴离子基团的非线性光学材料进行了探索合成和性能研究,结果如下:1.通过第一性原理计算,发现了两种共价紫外非线性光学材料B2O3Ⅰ和B2O3Ⅱ。已知的紫外非线性光学晶体主要集中在含有碱金属或碱
弛豫铁电单晶材料,例如Pb(Mg1/3Nb2/3)-Pb Ti O3(PMN-PT),Pb(Zn1/3Nb2/3)-Pb Ti O3(PZN-PT),Pb(In1/2Nb1/2)-Pb(Mg1/3Nb2/3)-Pb Ti O3(PIN-PMN-PT),由于具有优异的压电、介电、机电性能使其在下一代压电换能器、传感器的应用方面具有巨大的潜力,因此受到了国内外研究人员的广泛关注。然而弛豫铁电单晶的巨压
微晶玻璃是一类同时具备玻璃相和晶相的复合材料,具有机械强度高、热膨胀系数可调、物理化学稳定性高等优点,虽然目前已具备较为成熟的合成技术,但是由于难以找到其潜在的实际应用,这大大阻碍了微晶玻璃的进一步发展。在微晶玻璃领域中,氟氧化物玻璃是目前研究最为广泛的材料之一。在本文中,我们通过调控玻璃组成,实现了一系列碱金属稀土氟化物玻璃的原位合成并找到了切实可行的实际应用,推动了微晶玻璃研究的进展。具体研究
随着时代的发展,材料在生活中扮演着重要的角色。而钙钛矿压电材料由于其优异的压电性能以及原料来源广而使人们更加重视,尤其是在一些高温领域,如航空航天,能源勘探和制造业等领域。目前市场上的可使用的压电陶瓷驱动器大多数仍然采用传统的PZT压电陶瓷,其居里温度Tc约为360℃,由于热激活的存在使压电材料去极化,导致安全使用温度远远低于居里温度,仅为居里温度的一半,所以传统的PZT压电陶瓷的只能在200℃以
近年来,镧系掺杂上转换纳米晶作为一类目前已经发展较为成熟的发光材料,在固态激光、三维显示、红外成像、防伪和传感器等领域有着重要的应用。在实际应用中,通常将上转换纳米晶分散在聚合物中制备成各种块体光功能材料。然而纳米晶在聚合物中容易出现团聚现象,并且在高功率激发下聚合物基底容易损坏,在一定程度上限制了其应用。作为一种代替选择,将纳米晶嵌入无机氧化物玻璃中是一种理想的选择。其制备方法简单,所得产物展现