论文部分内容阅读
随着光学薄膜滤光片朝着小尺寸而且高度集成化的方向发展,光学薄膜滤光片的设计和制备都面临了新的挑战。光子晶体的研究则是光学领域发展的新方向,利用一维光子晶体中的“超棱镜”效应,可以制作更小、更稳定、更集成化的新型光学器件。本课题主要研究小面元掩膜滤光片的制备与检测以及“超棱镜”效应的薄膜周期结构的设计、制备与检测,并对其进行了理论分析及实验研究。 论文首先介绍了光学薄膜技术与薄膜检测技术的发展和现状。 第二章主要研究了光学薄膜的制备工艺,寻求合适的工艺参数。对光学薄膜膜厚监控误差进行了模拟分析,提出了高精度膜厚光学监控的方法,并着重分析了镀制一维周期中高反膜结构所需的精确膜厚监控途径,实际制备的高反膜禁带附近的次峰与理论设计相吻合,这在通常的高反膜制备中是常常被忽略的。实验证明这种监控方法能有效地提高镀膜精度。 第三章对扫描辐射计的小面元(0.8×0.8mm)四通道可见光集成滤光片进行研究。通过采用光学掩膜的方法成功制备了符合设计尺寸要求的可见光滤光片,并利用光纤光谱仪测试了滤光片的光谱特性。 第四章中运用薄膜特征矩阵方法对一维周期中的反射膜结构以及基于法—珀腔薄膜结构的超棱镜效应进行了理论分析和数值模拟,搭建了用于探测超棱镜效应引起的微小光斑位移(微米级)的测试系统。设计了10个周期的周期性膜堆,在给定条件下测试到20μm左右的色散位移;利用F—P腔结构设计的薄膜结构则产生高达60μm左右的色散位移,与理论设计一致。研究超棱镜结构在加入金属反射层后,可以使得出射光强得到显著增加而群延时有下降,最终导致出射光的色散位移减小,通过改进设计使光束在膜堆中经多次反射从而使出射光束获得更大的空间分离。 最后对论文的工作进行了总结,并对今后的工作提出了建议。