论文部分内容阅读
聚乳酸(PLA)是一种可完全生物降解的热塑性高分子材料,它与其他可降解树脂相比,具有强度、模量高,成型加工性能好等优点。但是由于PLA价格较高、韧性低以及耐热性能差,限制了其在更广领域的应用。本文以两种植物纤维为增强材料,分别制备了椰壳纤维/PLA以及连续亚麻纤维/PLA(C-Flax/PLA)复合材料,研究了复合材料的制备工艺及性能。首先选用椰壳纤维为增强材料,对其进行碱处理后,通过转矩流变仪制备了椰壳纤维/PLA复合材料。研究了加工温度、纤维含量以及相容剂含量对复合材料性能的影响。力学性能结果表明,当椰壳纤维含量为30 wt%、加工温度为200℃时,椰壳纤维/PLA复合材料力学性能最佳,其拉伸强度较PLA提高了20%。DMA的测试结果表明,加入椰壳纤维后PLA材料储能模量增加,材料的T_g向高温移动,预示着复合材料抵抗外力变形的能力提高。DSC结果与POM图像显示,加入椰壳纤维后,PLA材料的结晶能力提高,这对复合材料力学性能起到促进作用。加入自制MAH-g-PLA相容剂后,复合材料力学性能明显改善,当相容剂含量为10%时,复合材料拉伸强度最佳,较PLA纯料提高了28%。SEM图像显示,加入相容剂后复合材料界面得以明显改善。通过熔融浸渍法制备了单向连续亚麻纤维增强PLA预浸带(C-Flax/PLA),对不同纤维含量、不同相容剂含量预浸带的结构与性能进行了研究。力学性能显示,当纤维含量为55 wt%时,预浸带拉伸强度达到235.75 MPa,较PLA提高了299.91%,已进入优质碳素结构钢的行列。DSC测试表明,加入亚麻纤维后,PLA材料的结晶能力明显提升,结晶度从PLA的9.69%最大提高至30.75%,这说明亚麻纤维在PLA材料中起到了异相成核的作用。通过力学性能、DMA及SEM图像证实,加入MAH-g-PLA相容剂后,预浸带的力学、动态力学性能及界面相容性明显改善,其中当相容剂含量为树脂重量的10%时,预浸带的拉伸强度最大,较不添加相容剂提高了75%。通过热压模塑工艺将编织后的C-Flax/PLA预浸带制成板材,并对C-Fla x/PLA复合板材的力学性能、吸水性、亚微观形貌进行了测试分析。力学性能表明C-Flax/PLA复合板材的拉伸强度较预浸带有所降低,但远远高于PLA纯料,且其弯曲性能以及冲击性能较PLA纯料显著提升。吸水率测试表明,加入亚麻纤维后,PLA材料的吸水率明显提高,但相容剂的加入使复合材料的吸水率有所下降。亚微观形貌显示,加入相容剂后亚麻纤维与PLA基体之间界面粘结明显改进。通过非等温冷结晶动力学对连续亚麻纤维对PLA材料结晶行为的影响进行了分析,发现Jeziorny修正的Avrami方程可以较好的描述PLA及其复合材料结晶性能,将拟合得到的数据与POM图像结合发现,亚麻纤维改善了PLA树脂结晶能力的主要原因为其促进了PLA材料的异相成核。最后通过堆肥法研究了C-Flax/PLA复合材料的生物降解特性,发现加入亚麻纤维后,复合材料的降解速率明显加快。埋藏40天时,材料的失重率从PLA的1.03%提高至9.10%。一方面是由于亚麻纤维自身的水解以及生物降解能力比PLA树脂更快;另一方面是由于纤维与PLA基体之间部分存在间隙,使得水分子或者微生物更容易进入复合材料内部,进而加速了材料的降解。