论文部分内容阅读
清代引进“杜氏三术”之后,就存在无穷级数的表达问题,没有代数符号,如何表达无穷级数?这是清代中算家遇到的一个重要问题。明安图首先对传入的三术作了研究,并给出了其它六术及其证明,而他的原有知识已不能圆满地解释和表示无穷级数,迫切需要一些新知识提供新方法,使已有知识构成探求新知的主要动力,使无穷级数的研究在更高的水平上进行。董祐诚和项名达等中算家不同程度受到明安图的思想与方法的启发,构成了清代无穷级数研究的主流,不少专家称为“明安图学派”。本文的研究得出如下结论:明安图以传统割圆术为基础,拓展了割圆术的几何方法,吸收了梅文鼎《几何通解》中的递加法,构造了连比例关系,借鉴了《数理精蕴》中的借根方法,在《割圆密率捷法》中首创一套独特的无穷级数表示法。董祐诚吸收了《数理精蕴》中的连比例四率法,提出了不同阶三角垛的加减运算,建立了相应的表达式。他虽未见到明安图的表示法和证明,但已受到流传的九术的影响,独立完成了九术的证明,并将九术简化为立法之原四术,借助垛积术研究无穷级数及其表示,将展开式中各系数的计算建立在三角垛的基础之上,从而在割圆术与垛积术之间建立了联系。项名达继承了董祐诚的垛积术方法,将董祐诚提出的递加数做了推广,将立法之原四术精简为两术,但他的无穷级数表示法并未借鉴董祐诚的方法,而是把梅文鼎《少广拾遗》中的表示方法和操作方法移植到了无穷级数的表示中。明安图、董祐诚和项名达的无穷级数表示法,各不统一,各具特色,有语言叙述,有图式表达,每个图式中有具体的表示方法,图式的下面附有操作方法和相关注解,做到图文对照。在中算史上,他们的无穷级数表示法显示出了很大的优越性,能直观形象的表明运算对象、运算法则、运算顺序、位值原则,能提高所构造的系统之间的互操作性,也能很好地揭示无穷级数表达式之间的内在关系,这对算学的传播普及也有积极作用。本文分为五部分进行论述:第一部分,探讨了明安图在《割圆密率捷法》中表示无穷级数的的方法基础:割圆术几何方法的拓展、连比例关系的构造、借根方法的借鉴。第二部分,分析了《割圆密率捷法》中的无穷级数表示法。本文认为,明安图借鉴了《同文算指》中三率法的表示方法,由单项式和多项式的表示开始,将其表示方法和操作方法移植到了无穷级数的加减、数乘、项乘、自乘中。从他的表示法来看,卡塔兰数的出现是必然的,是运算使然,无穷级数的反求问题即求反函数。莱布尼兹级数的表示则吸收了西法。奇零小数的表述及处理是新问题所采用的新方法。第三部分,阐述了董祐诚《割圆连比例术图解》中的无穷级数表示法。董祐诚运用了《数理精蕴》中的连比例四率法,将垛积术运用于无穷级数的研究,但其无穷级数的表示法与明安图的并不相同。第四部分,论述了项名达《象数一原》中的无穷级数表示法,认为项名达发挥了董祐诚的垛积术方法,但其无穷级数的表示法另辟蹊径。他使用递加图,结合梅文鼎的《少广拾遗》中的方法来表示无穷级数,与前人不同。第五部分,本文的结语,对他们的无穷级数表示法之异同作了详细的总结。本文从现今国际上提出的数学实作的角度入手,即中算家在当时的情境下研究无穷级数展开式问题时,是怎样表示的,表示的是什么,为何那样表示。本文先从个案研究入手,最后试图从宏观上把握整体的脉络。