论文部分内容阅读
硒化镉(CdSe)是直接跃迁宽带隙的Ⅱ-Ⅵ族化合物半导体,常温下呈深灰色,具有立方(C6V4点群)和六方(43m点群)两种结构。六方结构的硒化镉晶体是纤锌矿结构。由于CdSe具有较大的平均原子序数,对原子射线具有较高的阻止本领,同时其禁带宽度(Eg=1.7ev)较大,探测器工作时漏电流比较小,达到了M.B.Prince提出的优良室温核辐射探测器材料必须具备的要求,因而被认为是制备室温核辐射探测器的最有前途的新材料之一,可广泛应用于探矿、无损检测、核医学、环境监测、军事和空间宇航技术等领域。 由于制备具有高纯度和高电阻率的CdSe单晶体非常困难:到目前为止,制备CdSe单晶体的方法虽然很多,如溶液法、熔体法、温度梯度溶剂区熔法(TGSZ)等,但是都因各自的不足而没有成为简便而理想的制备CdSe单晶体的方法,所以CdSe单晶体没有得到广泛的应用。 本实验中,对传统气相提纯原料的方法进行了改进,避免了原料的二次污染,明显降低了原料中的杂质浓度,得到了高纯度的CdSe多晶原料。对气相法生长CdSe单晶体的工艺过程进行了改进,调整了晶体生长过程中的工艺参数,减小了各种造成的CdSe组分偏离理想化学配比的因素,生长出了中电阻率的(107Ω.cm数量级),红外透过率较为理想的(约为5096),低位错密度(104cm-2数量级)和低电子陷阱浓度(108cm-3数量级)的,完整性好的优质CdSe单晶体。采用蒸镀Au作为探测器的电极,并通过测定伏安特性和241Amγ能谱特性发现:CdSe探测器在腐蚀30秒、钝化40分钟后,背景噪声低,性能稳定,能量分辨率达到40%。晶体生长和探测器制备工艺技术是制备性能优异的探测器的基础,因此,通过不断改进晶体生长过程和探测器的制备工艺技术,可以制得低背景噪声、性能稳定及能量分辨率较高的CdSe室温核辐射探测器,这也是需要进一步研究和提高的地方。 本研究工作是四川大学材料科学与工程学院承担的国家教育部重点科技项目及高校骨干教师资助计划的部分工作。实验研究结果将对CdSe晶体的制备理论和实际开发应用都具有重要的意义,特别是对单晶体的生长和探测器的制备工艺研究将具有积极的推动作用。