论文部分内容阅读
传统的硝化反硝化脱氮工艺需要曝气、投加碳源和消耗能量,而厌氧氨氧化的发现为脱氮工艺提供了新的代谢途径,被认为是最具发展前景的脱氮工艺之一。然而厌氧氨氧化菌(AnAOB)生长缓慢导致厌氧氨氧化工艺的启动受到限制,AnAOB倍增时间为7-29 d且成功启动厌氧氨氧化工艺一般需要几个月的时间。为了克服经济弊端,通常是通过接种AnAOB来缩短反应器启动时间。因此,种泥的储存方法及储存后厌氧氨氧化污泥活性的快速恢复对于厌氧氨氧化工艺工程化应用显得极其重要。本研究选取了室温(14~30℃)、室外冰冻(哈尔滨冬天的室外环境-25~0℃)和冷冻(-25℃)条件,分别储存不同时间后通过测定不同存储时间和储存温度下厌氧氨氧化污泥的厌氧氨氧化活性下降值,明确厌氧氨氧化活性下降趋势。然后以此为基础,研究不同储存温度对厌氧氨氧化污泥活性的影响,以优化温度储存条件。同时探索储存后污泥的快速恢复研究,且通过不同储存时间和储存温度下厌氧氨氧化污泥的形态,结构和生物量的变化,探究厌氧氨氧化储存的原理,以期为厌氧氨氧化污泥的广泛应用提供理论依据。试验结果表明,无外源基质添加的条件下,不同储存时间和储存温度对厌氧氨氧化污泥的活性有不同程度的影响。室温条件下,分别储存15、30、45、60、75、100、130和180 d后,污泥的比厌氧氨氧化活性(Specific Anammox Activities,简称SAA)分别为储存前初始SAA的90.9%、64.3%、61.7%、43.2%、25.8%、19.3%、15.1%和12.0%。15 d到180 d的储存时间内,厌氧氨氧化活性几乎以线性下降(R2为0.951)。室外冰冻条件下,分别储存15、30、45、75和100 d后,污泥的SAA分别为储存前初始SAA的3.2%、4.8%、2.2%、-53.3%和-58.7%。经过15 d的储存后厌氧氨氧化污泥的活性已经几乎为零。冷冻条件下,分别储存15、30、45、75和100 d后,污泥的SAA分别为储存前初始SAA的25.9%、13.0%、6.7%、-2.6%和-5.7%。经过15 d的储存后厌氧氨氧化污泥仍然有一定的活性。当储存45 d后,污泥活性已经相当低。从75 d到100 d,污泥开始解体,体内的有机物融入到水中导致出水氨氮浓度高于进水氨氮浓度,使得污泥SAA为负值。室温条件下厌氧氨氧化污泥活性下降最为缓慢。与恒温冷冻相比室外冰冻储存下污泥SAA下降更为明显,说明冷冻过程中温度波动对AnAOB影响显著。室温条件下,储存时间在15-180 d内的厌氧氨氧化污泥可以在2-15 d的恢复过程中使污泥SAA活性基本得到恢复。冷冻储存时间在15-30 d内的厌氧氨氧化污泥经过7-10 d的短期恢复,污泥SAA恢复到储存前水平。而超过30 d的储存,经过10 d的短期恢复,恢复后污泥SAA活性均远远低于初始SAA。室外冰冻条件下,污泥储存15-100 d经10 d的短期恢复后SAA几乎为零,即远远低于初始SAA。因此,室温密封无外源基质添加的储存方法有利于厌氧氨氧化污泥的储存及快速恢复。室温储存下AnAOB数量降低幅度最小,储存100 d后厌氧氨氧化菌为储存前的84.03%,储存180 d后厌氧氨氧化菌为储存前的57.07%;其次为冷冻储存,储存100 d后厌氧氨氧化菌为储存前的63.24%;AnAOB数量变化最大的是室外冰冻,仅为储存前的2.3%。由实时定量PCR(qPCR)的定量结果为分析污泥活性、恢复过程的脱氮效果及比例关系等的变化提供了分子生物学方面的理论依据。也为以后厌氧氨氧化污泥的储存方法的研究及工程化应用奠定了基础。