论文部分内容阅读
三维音频技术是当前音频信号处理研究中的热点,具有广阔的市场应用前景。空间声场重放是实现三维音频技术的核心问题,旨在无失真地恢复原始声场,为听音者提供更为真实的临场感和沉浸感。Ambisonics是空间声场重放中最经典的方法之一,它基于球谐分析采用正交的球谐函数集分解和重建空间声场。根据球谐阶数的不同,Ambisonics可利用不同数目的扬声器进行声场重放,具有很高的灵活性和可扩展性。但出于实际应用的考虑,目前Ambisonics仍然存在无法兼容传统扬声器阵列系统、受限于规则球形或环形阵列的布局方式和混响房间内存在反射声干扰等问题。针对上述存在的几个问题,本文以声场的球谐分析理论为基础,从不规则扬声器阵列的内部和外部声场重放、多声道扬声器系统转换、房间传递函数(Room transfer function,RTF)的测量与建模和房间混响环境的模拟仿真几个方面展开研究工作,本文的主要研究工作和创新点体现为以下五个方面:1、基于动态增益参数的Ambisonics系统设计方法传统方法在解决不规则扬声器系统与Ambisonics的B-Format录制信号存在不兼容问题时,选用固定增益参数进行实现,重放结果折中了环绕声场在水平面各方位的质量。为提高各角度重建质量,本文提出一种基于动态增益参数的Ambisonics系统设计方法。根据Gerzon的心理声学定位原理,对各个角度的目标函数进行最小寻优。在训练阶段,通过优化各角度目标函数,获得动态增益参数集。在实时重放阶段,首先对Ambisonics录制信号在频域内进行声源定位估计,其次根据估计得到的角度与动态增益参数集进行增益匹配,最后根据声源方位所对应的增益参数进行声场重建。此外,对于Ambisonics的合成信号,利用目标声源的已知方位信息,简化合成信号的重放过程。通过双耳线索分析发现,所提方法所产生的方位与真实声源方位之间的差异明显低于现有方法。2、基于球谐展开的多声道转换方法针对不同扬声器系统之间难以有效地进行多声道转换的问题,本文提出了一种从原始系统多声道信号到替代系统多声道信号的转换方法。基于球谐展开和转换模型,本文设计了一种描述扬声器权重矩阵和转换前后系统中扬声器位置关系的匹配等式。尽管匹配等式的解可通过矩阵求逆法求得,但欠定问题会导致存在无穷多个解。为解决此问题,本文采用l1范数最小化过程约束可用的扬声器数量,从而求得唯一解。仿真结果表明,经所提多声道转换方法得到的转换系统,能够重建与原始系统相近的声场,重建误差优于参考方法。3、基于平面一阶扬声器阵列的外部声场重放针对Ambisonics系统受规则球形阵列的布局方式所限的问题,本文设计了一种用于外部声场重放的平面一阶扬声器阵列。相比于传统的球阵列结构,所设计的平面阵列具有更加灵活的扬声器摆放方式。首先,结合单极子和正切偶极子,本文设计了一种通用一阶扬声器。通过该扬声器的球谐表达形式,在x-y平面上应用缔合勒让德函数及其一阶导数的性质,一阶扬声器向外辐射的声场可分为由单极子部分控制的偶次谐波成分和由偶极子部分控制的奇次谐波成分。然后,通过恰当地选取多环形阵列的半径避免了矩阵求逆过程中的病态问题并得到鲁棒性的解。考虑到单极子在实际扬声器阵列中的广泛应用,本文进一步提出一种由单极子对组成的替代平面阵列,该阵列中的单极子对可等价为通用一阶扬声器。最后,通过设计实例验证了所提两种平面扬声器阵列重放外部声场的有效性。4、三维房间传递函数的水平面参数化方法针对混响房间内声场重放存在混响干扰的问题,本文提出了一种三维房间传递函数的水平面参数化方法,该方法对声源/接收点在各自水平面上的变化具有鲁棒性。基于水平谐波分析,所提方法利用缔合勒让德函数的性质去除了RTF参数中对水平面没有贡献的部分。RTF参数的减少引导本文设计了一种由多环形扬声器/传声器阵列组成的测量点结构用于RTF参数的提取。最后,通过单频和宽带的设计实例验证了所提水平面参数化方法的精确性。5、可旋转复杂声源的三维房间传递函数仿真方法针对现有的房间混响模型无法满足于复杂指向性声源建模要求的问题,本文提出了一种扩展的镜像源模型用于仿真三维混响房间中可旋转复杂声源的房间传递函数。由于复杂声源各向并不同性,所提扩展模型考虑了复杂声源指向性的镜像变化和声源的旋转移动这两个问题。该模型利用球谐分解描述了复杂声源辐射的声场。基于“轴翻转”(axis flip)的概念,声源与镜像源之间的镜像关系被归纳为声场球谐系数的统一镜像算子。通过探索球谐函数的旋转性质,进一步从数学上描述了声源的旋转行为。最后,通过仿真实例,验证了所提扩展镜像源模型的有效性。