论文部分内容阅读
建筑底层地面常出现湿积累现象,当湿积累严重时可导致地面泛潮、细菌滋生、破坏建筑结构等问题。目前对建筑地面热湿状态的确定大多忽略地面的热湿迁移过程或将地面作为绝湿处理,而建筑底层地面的湿状态是地下湿组分到达地表面及湿空气在地表面凝结的综合作用结果,尤其对于浅层地下水丰富的地区,其建筑地面湿积累现象更为严重,进而影响室内湿环境及空调负荷。因此,本文通过理论分析与数值计算相结合的研究方法,分析了地面热湿交换过程对室内湿环境及空调负荷的影响关系,特别考虑了不同浅层地下水埋深下对其的影响。在整体建筑热湿计算前通过二维土壤热湿传递计算得到地下土壤温度分布,获得了土壤热边界参数,进而计算地面绝湿前后及浅层地下水位埋深变化对室内湿环境及空调负荷的影响。热湿地区(武汉),考虑传湿后,空调期间地面在水蒸气压力梯度下放湿,潜热交换导致地表面温度降低;若不考虑地面结构湿传递,空调冷负荷预测时将会被高估21.7%,通过地面进入室内的湿量占通过围护结构传入室内总湿量的48.3%,地面湿传递形成的潜热热流使空调的湿负荷大大增加,房间总负荷增大;而干热地区(西安),全天地面结构处于吸湿区,且考虑湿传递后,地表面温度略有升高,对地表面热湿流影响不明显;当考虑地下水时,地下水位埋深越浅,地面上层(水泥砂浆层)的含水量越大,且其对室内地表面温湿度的影响较为明显,以无地下水的工况作为基准,当地下水位埋深5m~0.5m时,地面温度降低1.2%~6.5%,地面湿度增加2.0%~11.4%,地面热流增加5.8倍~25.5倍,湿流增加13.7%~28.4%。可见,若不考虑地下水的影响,对于浅层地表水丰富的热湿地区,在预测房屋冷负荷时将会高估,造成能源浪费,湿负荷预测偏低,造成湿积累现象。针对建筑底层地面湿积累问题,研究了防潮保温地面、架空地面两种地面防潮措施,并通过计算分析了改进后的地面结构对于地面防潮和室内湿环境及能耗控制的积极作用。防潮保温地面的最佳保温层厚度为140mm,较普通混凝土地面,地表面相对湿度降低约18.5%,地面上层(水泥砂浆层)的含水量降低约49.5%,地面潮湿问题得到有效控制,且地表面湿流在空调运行期间降低约39.0%,大大降低了室内湿负荷;架空层对于地面防潮的效果更为显著,地表面相对湿度降低约23.2%,水泥砂浆层含湿量降低约53.2%,且通过地面的湿流降低约37.9%,但架空地面导致地面结构外边界可与室外空气之间进行热湿交换,使得地面温湿度与室外气象参数接近,通过地面的得热量大,冷负荷增加。通过以上研究,获得了建筑地面热湿迁移过程对室内湿环境及负荷的影响关系,为准确计算室内环境及负荷提供依据,并研究了地面防潮措施,有效解决了地面湿积累问题。