连续变量量子密钥分发系统的安全性研究

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:zhangwenjiekao1
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
连续变量量子密钥分发(Continuous-variable quantum key distribution,CVQKD)系统可以在公共信道中建立安全共享密钥。其中,基于高斯调制相干态的CVQKD系统仅需使用标准的光学器件就可以实现量子信号的制备和探测,并且与现有的光通信网络兼容,因此具有十分广阔的应用前景。近年来,为了解决传统CVQKD系统因本振光传输而引发的各种安全漏洞问题,一种基于本地本振光(Local local-oscillator,LLO)的CVQKD系统方案被提出,并且其可行性得到了广泛的研究。该方案通过发送参考脉冲向接收端提供量子信号相位补偿所需的相位漂移信息,并且使用接收端本地产生的本振光对量子信号进行相干探测,于是可以避免因本振光传输而引发的安全漏洞问题。然而,实际系统因光学器件的不完美特性而存在各种噪声,如激光器相位噪声、调制器量化噪声和光子泄漏噪声等,这些噪声因素都会降低系统的安全性。特别地,当参考脉冲在线路中传输时,窃听者可以通过“截获-转发”攻击来控制参考脉冲的相位变化,从而改变量子信号的相位补偿噪声特性并引发潜在的安全漏洞问题。为了提高LLO-CVQKD系统的实际安全性,本文围绕相位补偿噪声特性变化带来的安全问题展开以下几个方面的研究:一、在信道漂移比较稳定的环境中,信道漂移的估计误差将改变相位补偿噪声的零均值特性并造成均值漂移现象,而传统的相位补偿噪声模型忽略了均值漂移的影响,于是存在安全界限估计过高的问题。为了提高安全界限评估的准确性,本文改进了相位补偿噪声模型,从理论上分析了均值漂移与安全界限的变化关系,从而得到更加准确的安全界限。研究结果表明,改进的相位补偿噪声模型能够准确描述均值漂移对安全界限的影响,从而有效提高安全界限评估的准确性。二、实际环境的复杂性将改变信道漂移的慢变特性,使现有的信道漂移估计算法产生较大的估计误差,从而增加量子信号的相位补偿噪声,降低系统安全性。为了减小信道漂移对系统安全性的影响,本文结合相位搜索算法与线性插值算法来提高信道漂移的估计精度,并采用自回归模型来预测信道漂移的变化,缩小搜索范围和提高搜索效率。实验结果表明,改进的信道漂移估计算法能够高效准确地跟踪信道漂移变化,有效提高相位补偿精度和系统安全性。三、窃听者通过放大参考脉冲的相位噪声可降低接收端对激光器参考相位的估计精度,从而增加量子信号的相位补偿噪声,降低系统安全性。为了抵御参考脉冲相位噪声放大攻击,本文利用激光器相位漂移的低阶相关特性,分别采用滑动块平均法、滑动多项式拟合法和矢量卡尔曼滤波算法来提高参考相位估计的准确性、稳定性和实时性,并从理论上分析了算法的均方误差特性和最优估计性能。实验结果表明,改进的参考相位估计算法能够有效抵御参考脉冲相位噪声放大攻击,提高系统的实际安全性。四、窃听者通过放大量子信号的相位噪声可以降低合法通信方之间的互信息,从而降低系统安全性。然而,由于量子信号过于微弱,且相位噪声与其他系统噪声难以区分,因此接收端难以直接抑制量子信号的相位噪声。对此,本文通过监测参考脉冲和量子信号的相位噪声水平来评估相位噪声放大攻击的强度,从而提高系统对相位噪声放大攻击的监测能力。研究结果表明,基于训练数据插入和基于训练数据随机选取的量子信号相位噪声监测算法可以有效监测相位噪声水平和攻击强度,提高系统对此类攻击的监测能力。
其他文献
无线通信系统的信道容量提升往往需要新技术的导入,能够直接提升系统信道容量的技术有多入多出技术,宽带高阶信号调制技术以及多带发射机技术等。这些新技术在带来更高信道容量的同时也会为线性化系统带来新挑战。多入多出系统需要集成大量的射频链路和天线,进一步提高天线的集成数量往往需要采用混合波束成形结构。混合波束成形结构中一条射频链路要驱动多个功放,使得数字预失真系统需要同时补偿多个功放的非线性失真,而功放之
云计算是一种新的网络技术。从广义上说,云计算是与信息技术、软件和互联网相关的一种服务。得益于虚拟化功能,云数据中心正加速成为一种新的IT资源供应方式。云环境的动态性与复杂性对任务调度策略提出了要求,既要保证服务质量,也要实现云数据中心的低能耗。关于节能与负载均衡的任务调度问题在一般情况下是NP完全问题,鉴于其NP复杂性,仍然需要进一步深入探索。本文重点关注并研究了云数据中心的任务完成时间调度问题,
社交网络作为一种互联网平台连接了海量的用户,为用户提供了丰富的服务,极大的方便了人们的日常生活。然而,用户使用社交网络产生的数据因为和个人生活关系密切,往往包含敏感信息。令人不安的是存在不可信的社交网络服务商,他们会将这些用户的敏感数据售卖给第三方以换取收益。更糟糕的是即使服务商在发布数据之前对数据做了添加噪声等扰动处理,攻击者依然可以利用技术手段对发布的社交网络数据发动隐私攻击。因此对社交网络中
探地雷达是地表地球物理科学中一种重要的探测工具。其中,能够满足特定应用环境需求的探地雷达又称为特殊探地雷达,如钻孔雷达、机载探地雷达、前视探地雷达、水下探地雷达等。特殊探地雷达可以极大地弥补常规地面探地雷达勘探技术的不足,因此极具应用前景。天线作为探地雷达系统最为核心的组成部分之一,能够辐射或接收指定频段的电磁波,完成电磁能量在自由空间和雷达系统间的相互转换,其设计的好坏往往决定了探地雷达系统整机
合成孔径雷达地面动目标指示(SAR-GMTI)技术可以对地面动目标进行检测,运动参数估计和重定位,在军事侦察和民用交通监控等领域具有重要作用。然而,传统的机载SAR-GMTI方法主要是针对常规机载平台设计的。而对于高超声速平台,传统方法将面临慢速动目标检测困难和速度估计精度不高的问题。因此需要对高超声速平台下的慢速动目标检测和速度估计方法展开研究。另一方面,在机动SAR的应用场景,由于平台运动轨迹
凭借快速的波束扫描,灵活的波束赋形能力,相控阵天线已经成为先进军事和商业应用中的关键技术。但是传统相控阵天线高昂的成本严重阻碍了相控阵天线技术在各个重要应用场景中的推广,例如卫星通信、5G通信等。如何实现低成本相控阵天线已经成为重要的研究议题。因此,本学位论文的目的是研究具有通用性的低成本毫米波相控阵天线方案,并对方案中涉及的关键技术进行展示和讨论。本文的主要内容如下:第一部分首先对比了当前相控阵
雷达吸波材料能够在特定的工作频段内吸收一定比率的入射电磁波,是目前军事领域雷达散射截面缩减及隐身技术的主要实现方法。但同时,现代雷达探测技术的日益发展要求吸波材料不仅具有超宽带、大角度的工作特性,还需要兼备低剖面、双极化等。为了实现上述目标,本文以超宽带宽入射角的电路模拟吸波材料(Circuit Analog Absorber,CAA)为研究课题,主要研究宽频带条件下吸波材料的散射特性,建立等效分
实现毫米波与太赫兹通信与应用的关键技术之一就是发展毫米波与太赫兹波辐射源,功率源器件是通信设备的核心部件之一。在毫米波和太赫兹频段,真空电子器件在实现高功率方面有着其他器件不可替代的优势。传统的毫米波及太赫兹真空辐射源器件主要采用热阴极作为电子源,热阴极真空电子器件的缺点是:发射电流密度小;阴极需要热子进行加热,不能在室温下工作;阴极预热需要一定的时长,无法满足即时性的需求等。传统的真空电子器件向
随着第五代移动通信系统(5th Generation,5G)的技术成熟和商业部署,第六代移动通信系统(6th Generation,6G)技术的开发研究开始受到广泛关注。可重构智能表面(Reconfigurable Intelligent Surface,RIS)被认为是6G网络的潜在技术之一。相关的实验测试结果表明:RIS能够有效地控制反射信号和入射信号间的相位、振幅、频率差,从而智能地控制无线
相控阵天线由于其快速的波束扫描特性以及强大的多目标追踪能力,在现代雷达通信系统中占有至关重要的地位。另一方面,未来的雷达通讯系统迫切地需求设计一个能将通信、雷达隐身及电子战等多个功能集成到同一孔径下的先进集成化电磁平台。因此该类电磁平台对未来相控阵天线设计提出了更多样化的需求,即同时具备宽带阻抗匹配、低剖面及低散射特性。强互耦相控阵天线利用天线间电磁互耦得到宽带阻抗匹配特性,并且它相较于传统宽带相