论文部分内容阅读
投影显示技术是显示产业的重要组成部分,随着人们对显示设备性能和便携性要求的不断提高,微型投影显示系统在半导体技术迅速发展的条件下已经成为电子消费行为的研究热点。对微型投影显示系统的光源选择进行研究,分析现有主流光源各自的优劣,讨论微型投影显示系统对光源的具体要求,认为单种类光源不能同时满足微型投影显示系统多方面的要求,然后引入1931 CIE-RGB系统、光度学、色度学的一些概念,推导出微型投影显示系统对三基色光光源出射光通量的要求ΦR≈1.77EsAs,ΦG≈8.12EsAs,ΦB≈0.106EsAs,在此基础上提出一种基于绿光DPL、红光LD和蓝光LED混合的照明光源方案,并通过进一步计算验证了这一方案的可行性。对使用激光光源进行微型投影显示系统照明时最重要的激光散斑现象进行研究,讨论激光散斑的分布特性和散斑消除的原理、分析了常规激光散斑消除技术存在的问题,得出常规激光散斑消除技术中,照明能量效率会随散斑对比度的下降而降低的结论。针对这一问题提出了一种基于旋转混光棒的激光散斑消除技术,并通过一系列计算机模拟验证了这一方法的对激光散斑消除、光源能量利用和光束线偏振态保存的有效性。针对绿光DPL,红光LD和蓝光LED的光束特性,分别设计了各自的整形光组,并在光学软件中进行模拟,模拟结果显示三基色光源出射的光线经过整形光组后,其照明光束的均匀度>83%,发散角<7.2°。根据设计数据,加工相应的光学元件,并通过一系列实验进一步验证了照明系统在散斑消除、能量保存、均匀照明等方面的有效性。投影图像的散斑对比度<5%,照明均匀度>80%。系统的整体能量利用率>15%。最后讨论微型投影系统未来的发展方向,认为DLP和LCoS微型投影显示芯片的大批量生产、LED光源性能的提高、激光光源成本的降低将是加速微型投影发展主要途径,而植入式集成投影模块则是微型投影系统的主要发展方向。