【摘 要】
:
世界各国越来越重视航空发动机技术的发展,并将航空发动机的研究水平作为衡量一个国家工业水平的高低。航空发动机的制造非常复杂,国内外优质的、完整的发动机制造技术仅掌握在少数发达国家手中。对于航空发动机来说,叶片加工占整个航空发动机制造工艺流程的30%以上工作量。目前,国内外常采用电化学的加工方式对其进行加工,但电化学加工后的叶片进排气边缘型面精度不高,残余大量不规则形状余量。为解决电化学加工叶片工艺流
【基金项目】
:
“航空发动机叶片进排气边缘的高精度修整技术的研究”国家自然科学基金(NO.91860134);
论文部分内容阅读
世界各国越来越重视航空发动机技术的发展,并将航空发动机的研究水平作为衡量一个国家工业水平的高低。航空发动机的制造非常复杂,国内外优质的、完整的发动机制造技术仅掌握在少数发达国家手中。对于航空发动机来说,叶片加工占整个航空发动机制造工艺流程的30%以上工作量。目前,国内外常采用电化学的加工方式对其进行加工,但电化学加工后的叶片进排气边缘型面精度不高,残余大量不规则形状余量。为解决电化学加工叶片工艺流程中存在的进排气边缘加工精度不高的问题,本文提出利用电火花加工技术对电化学加工后的叶片进排气边缘进行修整,并对其工艺进行了深入研究,以达到叶片进排气边缘高精度型面尺寸、形状和高表面质量。本文主要内容如下:(1)精密三轴电火花机床的搭建。由于航空发动机叶片工作在高温、高压及高速环境下,叶片材料均具有耐高温、耐腐蚀、高温稳定性好等特点。因此材料具有难加工、难切削性,采用常规的机械切削加工方式很难或者无法加工出符合精度要求的叶片型面。因而通常采用特种加工的方式对其进行加工。本文基于此问题,采用电火花加工的方式对叶片进排气边缘进行修整。根据电火花加工原理,研制了精密三轴电火花机床,对三轴电火花机床的硬件结构和控制程序进行了设计和研究。(2)粗、精加工工艺参数优化。为获得镍基高温合金(GH4169)电火花加工的最优工艺参数以达到叶片的高精度要求,将叶片加工工艺分为粗加工和精加工两部分。本文基于三轴电火花加工机床对镍基高温合金的粗、精加工加工工艺参数进行了研究。粗加工阶段,利用正交试验的方式得出粗加工的工艺优化参数为:脉宽为4μs、峰值电流为30A、振幅为0.9μm、振动频率为1000Hz,其材料去除率可达12.413mm3/min;精加工阶段,以单因素优化实验的方式得出精加工的工艺优化参数结果为:电源电压120V、脉宽0.5μs、峰值电流10A,其表面粗糙度Ra低至0.80μm。(3)六轴电火花机床结构设计。目前,主要有两种方案对叶片电火花边缘进行修整,一是利用成型电极的方式直接进行电火花的加工;二是利用电极和工件相对运动加工出高精度的叶片进排气边缘。本文采用第二种加工方案进行研究。由于叶片是复杂空间曲面,需要多自由度机床对其进行加工。因此,在原有的三轴电火花机床的基础上增加了三个旋转轴,设计搭建了一台六轴电火花加工机床。为达到理想的设计结果,本文末对所设计的机床进行了误差分析。
其他文献
大涵道比涡扇发动机被广泛使用于民用航空客机,低压涡轮作为其重要部件之一,其工作效率的高低直接影响发动机的工作性能,为此一般采用高负荷叶片设计以提高发动机的经济效益,然而飞机在高空巡航中,发动机处于低雷诺数环境下,低压涡轮叶片边界层极易发生分离,因此增大了叶型损失,导致低压涡轮气动性能急剧下降,而上游叶片产生的周期性尾迹将会诱导边界层提前发生转捩,从而达到抑制边界层分离的效果,因此本文采取实验与数值
航空发动机之于航空飞行器相当于人的‘心脏’,发动机性能优劣对其有着决定性影响,发动机的性能指标中,轻量化是一个重要的研发指标,轻量化可以提高发动机推重比,进而提高飞机的各项性能。发动机中涡轮盘是重要的组成部件,其结构性能对发动机的性能影响很大,所以对涡轮盘进行结构优化设计是十分有必要的,针对传统的形状优化的局限性,本文以某型号航空发动机涡轮盘为优化构型,建立了完整的拓扑优化流程,实现对涡轮盘的优化
压气机叶片气动设计作为压气机整体设计的重要环节,是一个高度复杂的过程,它依赖于设计者长期的知识和经验积累,以及几十年来逐渐发展的各种设计工具。随着对压气机整体性能要求的不断提高,必须在最短的时间内设计出改进的叶片,压气机叶片设计主要需要解决优化驱动叶片设计的时间成本和有效性问题。针对上述问题本文开发了轴流压气机叶片综合参数化方法。目前,已有的参数化技术多是从纯优化的角度出发,获得叶片的参数化表征,
气动弹性实验是一种验证理论模型、研究理论无法解释的现象、验证新型气动弹性系统安全性和完整性的方法。对于飞行器而言,气动弹性风洞实验,凭借其可靠性高和代价低的优势,成为飞行器颤振设计研究的主要方法和手段。其中,二元翼段作为一种典型翼段模型,在验证气动弹性理论、研究相关的颤振机理等方面被广泛应用。本文针对二元翼段模型,设计了一基于沉浮-俯仰的二自由度弹性支撑的颤振试验模型,并对该颤振试验模型进行地面振
显式动力分析在冲击问题中被广泛使用,因其处理大变形、断裂等高度非线性问题的能力较强。对于显式动力分析,计算使用的时间步长和网格量均会显著影响计算耗时。其中,时间步长将受到最小单元特征尺寸和材料参数的影响。最小单元特征尺寸通常由细小零部件所控制。采用简化分析模型代替详细分析模型,可有效的克服最小单元特征尺寸过小问题,同时还可以降低分析模型的网格量。螺栓是一类常见的细小零部件。在显式动力分析中,若不考
在航空发动机各种动静部件中有多种相互连接的结构,例如:花键套齿、端齿、止口以及螺栓连接结构等,而在航空发动机的转子系统中常采用螺栓连接各级轮盘和鼓筒结构,构成一种盘鼓转子螺栓连接结构。由于在盘鼓转子螺栓连接结构中,对于螺栓连接位置的连接接触刚度是很难做到准确建模的,在进行工程应用过程中很难确保计算效率。本文以航空发动机为研究背景,以航空发动机中螺栓连接的盘鼓转子系统为本文的主要研究对象,从局部结构
花键副由于具有高扭矩的传递能力和不对中的补偿能力,为航空发动机的可靠、耐用和精准传动提供技术支撑。在起飞、巡航和着陆的过程中,花键副长期处于高循环载荷下,名义上处于静止状态但具有微小振幅的花键联轴器,通过扭矩夹紧在一起的两个表面之间会发生损坏,为涡轮传动系统的长期运行带来了严重威胁。为设计高性能航空发动机花键联轴器,准确预测微动磨损是一项关键技术。目前,航空花键在磨损方面的基础理论与预测方法不够完
探索轻质、低成本、高性能的新型夹芯结构,实现结构轻量化,是航空、航天事业亟待解决的问题之一。折叠结构作为一种新型的夹芯结构,具有比强度高、比模量高的优点,且结构表面曲率不连续,雷达散射截面积较小,因此该夹芯结构有望被应用于雷达、天线罩等领域中。在本研究中,基于折纸思想,提出并制备了U型折叠夹芯结构,分析了该结构的力学性能和电磁特性,并与传统V型折叠夹芯结构进行了对比研究,主要研究内容如下:(1)为
铝合金在国内民生工业领域扮演着重要角色,因为其优秀的物理和化学性能被广泛应用于航空制造业,在飞机结构上铝合金常用于制造框、舱门骨架、龙骨梁、腹板、蒙皮等。飞机装配时,需要在铝合金结构件上制出大量的孔用于铆钉联接或者螺栓联接。在航空制造业的制孔领域发展了一种比较新的工艺——螺旋铣孔,其在加工质量、加工效率、适用场景等方面展现出了一定的优势,受到了广泛的关注。本文针对铝合金2024材料开展了螺旋铣孔构
基于智能结构的变体飞机是未来飞行器发展的重要方向之一,多稳态变体结构具有保持多种稳定状态的能力,使其能够根据实际任务需求产生自适应变形,并且不需要额外的能量输入就可以维持在稳定状态下,是一种保证未来变体飞行器具有轻量化和低能耗特性的理想智能结构。但是国内外的研究现状反映出目前的多稳态变体结构仍存在承载强度低、稳定性差等方面的问题。基于此,本文提出了一种基于薄壁圆柱壳内压膨胀效应的新型多稳态变体结构