GD4N24R型光电耦合器辐照损伤效应研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:aeo55121891
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
光电耦合器因其体积小、使用寿命长、抗干扰能力强、无触点隔离性强而被广泛应用在航天器通讯系统中,但空间环境中的带电粒子会对器件造成损伤,因此研究光电耦合器的空间辐照损伤效应就具有十分重要的工程和学术意义。本文选用GD4N24型光电耦合器作为研究对象,进行了30MeVSi离子、1MeV中子和不同剂量率γ射线辐照实验,结合4200半导体测试仪测试考察了光电耦合器电性能变化规律,利用深能级瞬态谱检测分析了在光电耦合器内产生的辐致缺陷,探究不同辐照源对光电耦合器性能的影响及损伤机制,并通过SRIM和GEANT4等模拟软件探讨了Si离子和中子辐照造成的位移损伤等效性问题。研究结果表明,30MeVSi离子辐照下,光电耦合器的电流传输比明显下降,分立器件中的发光二极管几乎不受影响,而光电三极管电流增益发生退化。随着辐照注量的增加,光电耦合器和光电三极管电性能逐渐下降。通过浸氢预处理的对比实验发现,氢能够加剧光电耦合器性能的退化,结合深能级瞬态谱分析Si离子辐照在光电三极管内部产生了不同类型的空位缺陷,对比得出氢通过影响电离缺陷加剧了光电耦合器性能的退化。1MeV中子辐照的影响作用与Si离子相似,光电耦合器与分立器件光电三极管的电性能发生明显的下降,而发光二极管由于其双异质结结构而呈现良好的抗辐照性,I-V特性几乎没有发生变化。中子辐照在光电三极管内产生了深能级位移缺陷,影响载流子的俘获和复合,导致过剩基极电流增加,电流增益下降,光电三极管电性能下降则造成了光电耦合器性能的下降。不同剂量率γ射线辐照实验结果表明,辐照后光电耦合器电性能发生了微弱的退化,结合深能级瞬态谱分析结果,发现γ射线在光电晶体管内产生了氧化物电荷缺陷,说明光电耦合器对电离缺陷的敏感性低于位移缺陷。等效性研究表明,30MeVSi离子和1MeV中子在光电三极管内部产生了不同类型的缺陷,计算得到Si离子和中子辐照导致的位移损伤不能等效。
其他文献
随着通信领域的发展,人们对于无线通信接收系统的要求也越来越高。超外差制式的方法是现在无线电接收技术的主流方法。而变频技术则是超外差制式的重要环节。因此,良好的变频技术对于整个通信系统来说都是至关重要的,可以说一个微波系统乃至通信系统的整体性能和功能的好坏,在很大程度上取决于混频器的性能。本文以传统单端混频电路入手来设计太赫兹超宽带上变频器。首先舍弃了定向耦合器,采用三个不同的滤波器代替定向耦合器实
近年来,第五代移动通信及IP网络有着长足的发展,VR、超清视频直播、无人驾驶等多媒体应用也因此受益,变得越来越广泛及受欢迎。多媒体通信所需的分辨率、时延等传输性能要求愈发提高,这对信息的无线传输有了更进一步的要求。相较于TCP协议,UDP协议有着更快的速率,但是由于缺失差错控制、流量控制等功能,在无线传输时很难避免堵塞以及丢包现象。于是本文引入了Raptor码,使之具有前向纠删功能,使通信的可靠性
近年来、中国与乌克兰双边合作关系日益密切。两国逐年举行了许多关于不同主题的会议、这些会议旨在加强合作并创建新地联合项目。毫无疑问、两国都需要相互支持。对于乌克兰方面来说、众所周知、中国幅员辽阔、需求独特。因此、乌克兰可以为中国提供蓬勃发展的农业部门和各种自然资源。乌克兰是在敖德萨地区的主要贸易和物流中心。它是一个具有重要战略意义的地区、位于黑海地区的中心。它的地理条件在创造优越的新的贸易路线和连接
半球谐振陀螺是一种结构精简、无运动部件的哥式振动陀螺,因其高精度、长寿命、高可靠性而在惯性技术领域广受关注。目前已成功应用于深空探测、潜艇航行、武器巡航等各领域,并且可持续工作数年,是未来引领惯性技术发展的重要器件。半球谐振子是陀螺的核心部件,陀螺仪的正常工作依赖于谐振子运动时的进动效应。理想情况下半球谐振子可以持续高精度工作,但是由于实际环境中存在各种形式的阻尼导致谐振子能量的耗散,因此半球谐振
智能反射面(Intelligent Reflecting Surface,IRS)有望在今后的移动通信技术中得以广泛使用。随着智能反射面的辅助,通过联合基站主动波束赋形(Active Beamforming)和智能反射面被动波束赋形(Passive Beamforming),移动通信系统的频谱效率能够得到有效提高。本文针对多用户下行多输入单输出(Multi-Input Multi-Output,M
随着无线通信技术在近几年飞速发展,对通信系统中数据传输速率要求不断提升,然而,无线通信的传输环境是恶劣的,如今在大多数通信场景中,不仅发射机和接收机之间会存在大量的遮蔽物造成多径效应,而且发射机与接收机有可能都处于高速运动中造成多普勒效应,多径效应会产生频率弥散,多普勒效应会产生时间弥散,这就是“双弥散”的信道传输环境。如果通信信号在此类信道中进行传输,而又不采取任何抗干扰技术,接收信号将会产生严
随着全球信息化的快速发展,人们对高通信质量、高速率的通信服务的需求越来越显著。由于地面蜂窝通信的局限性,使得处于边远地区的用户无法接受服务。卫星通信以其通信距离远、通信质量稳定的特点可以作为地面通信的补充为用户提供服务,近地轨道(Low Earth Orbit,LEO)卫星的轨道高度低,通信时延小,相对于对地静止轨道(Geostationary Orbit,GEO)卫星更适合传输话音和数据业务。L
近些年来,高频(HF)雷达广泛应用在海平面的目标探测等领域。HF雷达系统通常2-30MHz的频率范围内运行。在复杂的电磁环境干扰下,需要在更低的快拍下进行高精度的高频雷达目标个数估计。抑制天线之间的互耦效应,是提高雷达目标个数估计的有效方法。因此,本文研究高频雷达目标探测背景下,提高目标个数估计能力的方法。首先,研究了有限快拍下,经过协方差矩阵重构的目标个数估计方法。对于高频雷达而言,更高的目标个
金刚石作为第三代超宽禁带半导体材料,力学性能优秀,热导性良好,室温热膨胀系数小,对于大部分激光波段具有很好的透过性,由于金刚石的这些特性,在加工金刚石时激光是很好的方法。水导激光加工可以延展激光的焦点,提高其沿轴向加工的效率,同时热影响区面积小、加工过程无熔渣;飞秒激光脉宽极短,加工时作用区域内电子温度瞬间升高,电子变成等离子态并以喷射的方式脱离,因此热影响极小,加工表面质量很高,为满足金刚石微槽
GaAs金属半导体场效应管(GaAs MESFET)广泛应用于卫星、雷达、电子对抗等领域,在微波器件及集成电路中独树一帜。随着国内微波技术的日益发展,研究国产新型GaAs MESFET在空间环境中的可靠性成为了一个亟待解决的问题。本文以国产新型GaAs MESFET为研究对象,研究了该器件在低能电子、高能电子、低能质子以及高能质子作用下的辐照效应及损伤机制。150 keV低能电子辐照研究结果显示,