论文部分内容阅读
自组装单分子膜(Self-assembled monolayers, SAMs)技术经20多年的研究,在基础理论和应用上取得了突飞猛进的发展。倍受关注的SAMs体系主要有烷基硫醇类、有机硅烷类和脂肪酸及其衍生物。这些分子成膜条件易控,膜有序且取向性好、排列紧密而稳定,在生物化学、医学、传感器制备、纳米科学、金属缓蚀、材料科学等领域已有成功应用。应该指出的是,SAMs技术仍处在方兴未艾阶段,目前需要解决的课题有:(一)发现更多的SAMs体系,尤其是具双功能或多功能位的成膜分子; (二)由于SAMs过程完全自发,膜结构取决于分子和基底以及分子间的作用方式,且受环境因素影响大,因此深刻了解SAMs构效关系,是拓展自组装技术应用的关键。由于自组装膜是分子在基底表面的单层吸附,这对分析技术的灵敏度有很高要求。常用的SAMs表征手段有电化学方法、X光电子能谱(XPS)、俄歇电子能谱(AES)、扫描隧道显微镜(STM)、原子力显微镜(AFM)、石英微天平(QCM)、接触角(Contacting angle)测定、傅立叶变换红外光谱(FTIR)、拉曼光谱(Raman spectroscopy)和表面增强拉曼散射(SERS)分析、椭圆偏振光谱(Ellipsometry)、二次谐波发生(SHG)、和频发生(SFG)、静态二次离子质谱(SSIMS)、高能或低能电子衍射(HEED或LEED )、X射线衍射(XD)、以及近边扩展X射线吸收精细结构(NEXAFS)。利用这些分析技术,人们对SAMs结构和成膜机理已有了一定的认识。然而,其中SHG、SSIMS、HEED、LEED、XPS和AES实验时需要高真空,条件苛刻; STM和AFM虽然能获得二维原子级图象信号,但缺乏分子选择性; FTIR和Raman技术能提供分子水平的信息,但尚未在二维尺度达到系统研究SAMs的层次,特别是对具多位点的成膜分子。上世纪90年代以后,随着共焦显微激光拉曼技术的出现,使拉曼光谱分析的空间分辨率和仪器灵敏度大大提高。借助XY-自动扫描平台和Z轴自聚焦系统,可实现对表面的Raman mapping,获得的光谱包含分子空间二维分布的振动信息,在材料应力研究中已大显身手,但目前该技术在自组装单分子层研究领域的应用较少。本论文的重点是通过高空间分辨率的显微共焦和可达单分子水平检测灵敏度的SERS技术联用,进行Raman mapping实验,在不同介质中,观察包括辅酶NAD、巯基嘌呤和植酸化合物等具多吸附位点成膜分子,在金属基底上的自组装过程,并评价膜的二维有序性以及环境因子的影响程度。根据振动量化计算和SERS机制,解析SAMs膜结构。在此基础上,进行电化学和原位光谱电化学分析,考察膜的稳定性和构效关系。本论文具体内容如下: (1)运用SERS mapping技术,分析了银电极表面形貌对NAD分子自组装机理的影响(第2章)。通过不同的处理方法,获得了两种银表面,经STM表征