J-TEXT电子回旋辐射成像诊断信号后处理技术的研究

来源 :华中科技大学 | 被引量 : 0次 | 上传用户:ouyang000
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
电子回旋辐射成像诊断(Electron Cyclotron Emission Imaging,ECEI)是观测托卡马克等离子体二维电子温度演化的重要工具,其信号的质量及信号的合理性分析对后续物理分析至关重要。本文工作围绕J-TEXT ECEI信号处理技术的研究而展开,研制了J-TEXT ECEI自动数据清洗与反馈调节功能模块,发展了J-TEXT虚拟ECEI诊断平台,并基于虚拟诊断平台进行了初步仿真研究。首先,本文介绍了J-TEXT ECEI自动数据清洗与反馈调节模块的研制工作,包括ECEI信号分类器和反馈调节单元的设计。基于机器学习,设计了包含三个模块的两级树状结构分类器。比较了支持向量机模型、随机森林模型和决策树模型在每个模块上的分类效率和准确率,确定了支持向量机模型和随机森林模型混合的分类器结构。根据信号特点,设计了每个模块的信号特征构建方法。采用网格搜索法和五折交叉验证法,确定了分类器的最优模型参数。在ECEI数据集上,分类器对各类ECEI信号的分类准确率都达到了93%以上。在信号分类的基础上,设计了J-TEXT ECEI反馈调节单元,实现了对问题目标ECEI通道信号的自动反馈调节。ECEI信号的整个反馈调节过程(包括信号分类和反馈调节)可以在3分钟以内完成,满足J-TEXT实验要求(两个相邻放电之间的间隔大约为5分钟)。其次,本文阐述了J-TEXT虚拟ECEI诊断平台的研制工作和相关模拟结果,为ECEI诊断信号分析提供了有力的工具。诊断模型的设计包含ECE一维模型和ECE二维模型。ECE一维模型计算了由等离子体外向内入射的电磁波的传播轨迹,根据入射电磁波信号强度与等离子体内相应辐射位置等离子体温度的关系,得到了电子温度信息。ECE二维模型计算了电磁波传播过程中的能量分布二维演化,实现了模型的更精细模拟。基于虚拟ECEI诊断平台,本文模拟分析了等离子体密度条件对ECEI观测位置的影响、光学厚度对ECEI电子温度测量的影响,给出了相关分析结果及多个等离子体参数下的相关修正数据,为J-TEXT ECEI信号分析提供了参考。
其他文献
无线电能传输技术相比于传统有线输电方式具有灵活便捷、电气隔离、安全可靠、环境适用性强等供电优势,极具广泛应用前景及实用价值。本文围绕传输距离、系统功效等技术指标,基于铁氧体磁芯提出了能够提高无线电能传输的传输功效、输电距离,实现多自由度及多端负载无线供电的磁偶极线圈多向多负载无线电能传输系统设计方案,主要研究工作及成果如下:1)基于四种磁谐振补偿拓扑特点,建立了磁偶极线圈系统的等效磁路及等效电路分
学位
等离子体密度是磁约束聚变装置实现商业化的重要参数,然而托卡马克运行区间存在密度极限,一旦超过密度极限,将出现密度极限破裂影响装置安全稳定运行。边界热不稳定性是密度极限破裂的先兆之一,然而目前已有的研究无法给出热不稳定性演化引发密度极限破裂的关键因素。为了更加全面理解热不稳定性以及其与密度极限破裂的关系,有必要通过数值模拟和实验的手段研究热不稳定性导致密度极限破裂的物理机制,探索提高托卡马克密度极限
学位
电子回旋电流驱动(Electron Cyclotron Current Drive,ECCD)系统可以通过驱动非感应电流改变电流密度剖面、抑制新经典撕裂模等,有助于维持高约束与高比压等离子体。自1980年Fisch提出ECCD理论,在不同国家的托卡马克装置中ECCD实验都取得了明显的进展,J-TEXT托卡马克于2019年也发展了ECCD系统。为了深入理解ECCD与等离子体的相互作用以及优化ECCD
学位
托卡马克内部输运垒(Internal Transport Barrier,ITB)的形成可以显著降低反常输运水平,提高等离子体的约束性能。虽然离子的热输运被降至新经典水平,但电子热输运依然反常,该通道的ITB(electron ITB,eITB)形成机制尚不完全明确。无碰撞捕获电子模(Collosionless Trapped Electron Mode,CTEM)湍流作为引起电子反常热输运最有可
学位
HFRC(HUST Field Reversed Configuration)装置是基于场反位形等离子体对碰融合与磁压缩概念而设计搭建的实验装置,其由电源系统、磁体系统、脉冲注气系统、真空抽气系统及控制系统等共同组成。由于在电离气体时刻的气压条件会影响到形成的等离子体参数,因此脉冲注气系统需要与电源系统在时序上相互配合。本文的主要工作是对脉冲注气系统的设计及初步搭建。本文首先分析了脉冲注气系统的设
学位
在磁约束核聚变中,为实现聚变点火通常需要采用辅助加热方式。电子回旋共振加热(Electron Cyclotron Resonance Heating,ECRH)具有良好的局域加热能力且波与等离子体耦合机制简单,是常见的辅助加热方式之一。电子回旋波实时功率作为ECRH系统的重要参数之一,对系统的安全稳定运行及相关物理研究有着重要的意义。基于J-TEXT装置105 GHz/500 k W ECRH系统
学位
六氟化硫(Sulfur Hexafluoride,SF6)作为一种强电负性气体,不仅广泛用于电力系统的绝缘,还广泛应用于航空航天中低气压下的绝缘和微电子工业中的等离子体刻蚀等,研究低气压下SF6的击穿特性对这些应用有重要的意义。目前低气压下SF6的直流击穿特性的实验与理论数据都较少,本论文针对低气压下SF6的直流击穿现象,研究了该过程中的等离子体参数演化和放电模式,并模拟了对应的帕邢曲线。采用了一
学位
在磁约束可控核聚变领域的的研究中,电子回旋共振加热(ECRH)具有与等离子体耦合效率高,微波天线远离等离子体等特点,被广泛应用与托卡马克装置的等离子体加热等方面的研究中。使用微波负载对微波功率的精确测量对于ECRH系统的调试以及安全运行具有重要意义。本文的研究内容主要包括以下三部分。第一部分中,开展了基于准光学理论的圆柱型微波负载分析方法研究,对微波负载内吸波材料的反射系数的特性进行了分析;建立了
学位
在托卡马克装置放电实验中,等离子体破裂会破坏正常的等离子体约束,瞬间中止实验放电,产生高热负荷、强电磁力、高能逃逸电子三大危害。对于未来的大型聚变堆,比如ITER而言,破裂会产生灾难性的事故。而破裂预测能够在等离子体破裂发生前对破裂进行提前预测,辅助破裂避免和破裂缓解系统,从而降低破裂危害。针对目前破裂预测领域中大多数性能优秀的破裂预测模型主要采用深度学习算法,也有部分基于Light GBM、XG
学位
快速消除大雾、提升能见度对保障交通运输具有积极意义。声波除雾是一种具有成本低、使用方便等优势的新型除雾方法。声波加剧小液滴之间的相对运动,促进小液滴碰并生成大液滴,有效降低小液滴数浓度,进而提高能见度。然而,关于声波频率、声压级等参数对促进液滴碰并生长的规律依旧存在一定程度的争议。因此,进一步探究声波促进液滴碰并生长的规律对人工除雾具有重要意义。首先,基于流体动力学模型建立了包含经典同向碰撞、声尾
学位