论文部分内容阅读
随着社会的发展和科技的进步,人类对深海、深地和深空进行探索的需求越来越强烈。为了感知已有技术无法达到的领域,研发具有高稳定性、高信号质量、高灵敏度、组网能力强的传感器成为迫切需求。基于光纤的传感系统,在强电磁辐射、易燃易爆、高温高压、野外无法供电等极端或者恶劣的情况下,具有电类传感系统无可比拟的优势。在各类光纤传感系统中,光纤分布式传感系统,由于具有长距离和大容量等优势,广泛应用于工业监测、能源开发、交通管理等领域。而具有更快响应速度、更高稳定性、更长传感距离和更高灵敏度的光纤分布式应变传感技术的开发,对油气勘探、海底地震监测等领域具有极为深远的影响。现有的光纤分布式应变传感系统还存在诸多不足。针对国家自然科学基金国家重大项目子课题“长距离分布式光纤传感网关键器件与技术研究”中提出的已有光纤分布式应变传感系统无中继传感距离不足的问题,以及单参量光纤分布式传感系统无法同时进行动/静态测量的问题,本论文运用新型光纤分布式放大技术和信号复用技术,设计实现了传感距离超过175 km的布里渊光时域分析仪(BOTDA)和传感距离超过150 km的动静态结合的光纤分布式应变传感系统,在原有系统的基础上取得了较大突破。另外,本论文提出了基于弱掺铒光纤的随机激光混合分布式放大方法,为进一步延长光纤分布式传感系统的无中继距离提供了新的途径。同时,本论文针对国家自然科学基金国家重大科研仪器研制项目“基于新型分布式光纤声波传感器的地震检波仪”提出的现有分布式应变动态解调系统信号质量不高和对侧向应变不敏感的问题开展了探索性研究,分析了相干解调模块强度不平衡造成的信号谐波失真,并提出了实时补偿的方法,另外,提出了基于后向瑞利散射偏振态分布式重构光纤双折射矢量以多点监测侧向应变变化的方法。最后,本论文在国家留学基金委的支持下,根据光纤前向布里渊散射对轴向和侧向应变均敏感的特性,对新型分布式应变传感技术进行了探索。本文的主要工作如下:(1)分析了相干解调模块强度不平衡性对于解调信号的影响并提出了实时补偿的方法。针对基于光相干解调的相位敏感型光时域反射仪(Φ-OTDR),进行了解调模块强度不平衡对解调信号影响的深入研究,并提出了利用后向瑞利散射信号的统计规律对光相干解调模块的强度不平衡性做出实时无损补偿的方法。(2)提出了运用铒离子和拉曼增益共同对分布式应变传感信号进行分布式放大的方法。提出了利用铒离子与拉曼增益一起为分布式应变传感信号提供综合放大的方法,并优化了系统设计,使得信号功率在掺铒光纤的背景损耗和分布式放大上取得平衡,使得系统增益同时拥有最大值。(3)提出了利用后向瑞利散射光的偏振态分布式重构光纤的偏振传输矩阵的方法,实现外界侧向应变变化的多点监测。并且,提出了利用90°光学混频器同时恢复后向瑞利散射光偏振态和相位,在不改变光相干型Φ-OTDR整体设计的情况下,同时对侧向和轴向应变进行分布式监测的方法。(4)提出利用激发多芯光纤的前向布里渊散射,同时对外界的侧向轴向应变进行分布式传感的方法。利用多芯光纤的内侧/外侧纤芯有效激发前向布里渊散射的基模/高阶模,并运用BOTDA对特定声场模式的截止频率进行分布式标定,可以同时对轴向和侧向应变进行感知。(5)利用三阶光纤随机激光放大实现了超长距离无中继BOTDA。利用三阶和二阶光纤随机激光放大,在系统空间分辨率为8 m的情况下,设计出传感长度突破175 km,应变传感精度为±40.12με,所得的品质因子大于200,000的BOTDA系统。(6)实现了超长距离的动静态结合分布式应变传感器。该系统有机利用了多种复用技术,抑制了子系统之间的相互影响,在静态测量空间分辨率8.2 m,动态测量空间分辨率30 m的情况下,设计出无中继传感距离大于150 km,静态应变的传感精度可达±16.4με的动静态结合的光纤分布式应变传感系统。