论文部分内容阅读
整流电路中由于功率器件的开关特性,电路电流会发生畸变,即产生谐波,电路呈现非线性阻抗特性。电源除提供整流电路负载有功和无功功率外,还要提供畸变功率给整流电路,因此整流电路的视在功率与负载的视在功率不同,大于负载的视在功率。由于电源侧无法判断供电的对象是否为整流电路,将按照整流器的视在功率计算电费和分析,而实际整流电路的负载消耗的电能小于整流器的视在功率,这将导致无法准确反映负载类型,影响电源的潮流分析、计量计费以及负载预测等。为此研究整流电路的非线性阻抗特性具有理论和实际意义。目前研究整流电路的方法是进行傅里叶变换,将整流电路的电压、电流信号进行频域的分析及计算,然而整流电路的开关特性,在电路中会产生突变信号,傅里叶变换不能确定突变信号发生的具体时间,导致整流电路存在时域的多解性,整流电路的瞬时非线性阻抗特性无法准确描述。短时傅里叶变换选择一个时频局部化的窗函数,假定分析窗函数在一个短时间间隔内是平稳的,通过移动窗函数,从而分析和计算出各个不同时刻的功率谱,具有一定时域和频域分辨力,为此本文采用短时傅里叶变换的方法对整流电路非线性阻抗特性进行分析和计算。本文主要开展了以下研究工作:(1)整流电路数学模型。以典型的单相整流电路为研究对象,建立它们的开关函数模型,分析功率、负载功率及畸变功率的特点,为整流电路非线性特性阻抗分析奠定数学基础。(2)短时傅里叶变换对整流电路分析的适用性分析。论述了短时傅里叶变换的基本原理,分析了短时傅里叶变换对整流电路这类具有周期性又有开关突变性对象的适用性。(3)单相整流电路非线性特性阻抗的短时傅里叶变换分析。基于短时傅里叶变换对电路电压、电流进行分析,由此计算出实际负载阻抗的类型,从而得出实际负载的消耗功率情况,确定采取线性还是非线性方法进行谐波、无功补偿和潮流分析和计算。(4)非线性特性阻抗的短时傅里叶变换与傅里叶变换对比研究。通过对比研究,进一步证明短时傅里叶变换在整流电路非线性特性阻抗量化分析的正确性,为功率计算和分析奠定理论基础。