论文部分内容阅读
近红外光谱(NIR)分析技术具有分析速度快、样品处理简单、可对样品进行无损化分析等特点,可对样品进行定性识别和定量分析。近年来,近红外光谱技术受到越来越广泛的关注,逐渐被应用到石油化工、有机合成及分析、环境检测、食品药品分析等领域。本论文基于近红外光谱技术的特点,建立了分析检测食品及油品中三类不同物质的定性识别模型及定量分析模型,并应用于食品分析及油品鉴定等的实际检测过程。论文共分为四章。第一章简要概述了近红外光谱技术的基本概念、测样特点、分析过程、数据处理模式等。此外还介绍近红外光谱在食品检验、工业用油品检验等领域的应用。最后指出了本论文的研究目标和内容。在第二章中借助近红外光谱技术构建了一种定性识别牛奶中细菌的种类并对细菌含量进行定量分析的方法。利用主成分分析法建立了对牛奶中的几种细菌(阪崎肠杆菌、乳酸杆菌、金黄色葡萄球菌)的种类的定性识别模型,以检测牛奶中是否含有细菌以及细菌的种类。再用偏最小二乘法建立定量分析模型,对牛奶中单一细菌的浓度进行定量分析,检测的线性范围为2~8 log CFU/mL,校正均方根误差分别为0.30、0.74、0.57,预测均方根误差分别为0.37、1.08、0.77。同时测定了含有阪崎肠杆菌和金黄色葡萄球菌两种细菌的牛奶中每种细菌的含量,校正均方根误差分别为0.58和0.63,预测均方根误差分别为1.52和1.57。该方法可应用于牛奶的快速检测。在第三章中借助近红外漫反射光谱法和主成分分析法建立了一种分辨转基因大豆及非转基因大豆的方法,正确率95%。并用偏最小二乘法建立了检验非转基因大豆中所含有的转基因大豆的比例的定量分析模型。预测结果的平均相对误差为-0.460,校正、预测均方根误差分别为1.516和1.337。预测结果较好,为转基因食品的检验提供了一种简便、快捷、准确的方法。在第四章中将近红外光谱技术运用于区分识别矿物型、合成型两种类型导热油,准确率100%。同时以区分识别矿物型导热油为例,对同一类型导热油不同品牌的区分与识别,平均预测准确率95%。研究表明,该方法可用于定性识别性能不同的导热油。