论文部分内容阅读
IN718镍基高温合金是航空航天、电力能源、国防科技等领域应用最为广泛的关键金属结构材料。伴随新型重大装备的大型化、一体化和高性能化发展趋势,各行业对高品质大尺寸IN718铸锭母材的需求日趋迫切。IN718合金化程度较高,在铸锭凝固过程中,其组织结构最主要的问题就是由于溶质再分配而引起的成分不均匀性,由此引发凝固偏析,从而对后续热加工性能以及最终产品的力学性能造成不利影响。随着生产直径不断扩大,铸锭内部冷速大幅降低,此时合金所表现出的凝固特性也不同于常规情况。因此,明确并掌握IN718合金在缓慢冷却条件下组织、结构、成分等凝固和偏析行为的变化规律是成功制备大锭型合金母材的根本研究方向和主要内容目标。本课题依托国家自然科学基金重点支持项目(No.U1560203),主要针对低冷速凝固状态下IN718合金的凝固特性和偏析行为开展系统的基础研究工作。拟通过实验手段和理论分析在某种程度上反映出大型IN718电渣锭在凝固过程中的一般特征,完善合金凝固及偏析行为的基础理论,揭示铸锭向大型化发展的瓶颈因素,丰富相关领域的科学认识,为后续科研工作以及实际制备高品质、大尺寸IN718电渣锭提供借鉴和参考依据,并为铸造、重熔、均匀化等关键冶炼和加工工艺的改进和拓展奠定理论基础。首先根据合金体系的凝固相转变热力学分析结果,在实验室条件下模拟大型电渣锭内部的缓慢冷却速率,采用高温动态原位观察、连续/淬火凝固等多维度实验方法并结合相关理论计算,对不同冷速和温度下IN718合金的凝固及偏析行为进行全面的分析和表征。结果表明:合金在低冷速下的整体凝固过程可分为三个阶段,即初始瞬时凝固、快速凝固和后期缓慢凝固阶段;Nb和Mo是最主要的正偏析元素,其有效分配系数均随冷速的升高而线性增大,利用实验参数修正的Clyne-Kurz偏析模型可对二者在残余液相中的浓度变化趋势进行定量表征;合金的典型凝固偏析产物包括大量Laves相和少量MC(M=Nb、Ti)碳化物,偏析相体积分数随冷速的降低而增大;铸态二次枝晶间距(μm)在慢冷速(℃/min)凝固条件下的预测公式可建立为:λ2=258(GR)-1/3-54.23;电渣锭中的黑斑最有可能在凝固早期形成,此时液相分数介于0.3~0.2之间,温度区间为1320~1310℃。其次利用自制的实验室规模电渣重熔设备开展不同重熔电流制备IN718电渣锭的系列实验,对比研究并揭示电渣锭不同位置凝固质量特征与重熔电流的对应关系,同时在实验和热力学分析的基础上阐明主要非金属夹杂物的演变机制。结果表明:适当提高重熔电流可有效减小氧化物夹杂的尺寸和数量,从而降低氧含量,但枝晶偏析程度随之加重;若重熔电流设置过低,则可能发生吸氮和吸氧现象,产生大量新生夹杂物,使得A1、Ti等易氧化元素在电渣锭中的含量和分布变得不再稳定;常规渣系下IN718电渣锭中最主要的两类夹杂物是以MgO·A12O3为核心,外层包裹(Nb,Ti)CN和NbC的复合层状夹杂,以及(Nb,Ti)N氮化物夹杂,二者在合金液相线温度以上依次形核,随着重熔电流的升高,夹杂物平均粒径、体积分数和数量均呈现出下降的趋势。随后结合典型实验数据和软件模拟结果,对合金体系溶质元素的高温扩散机理进行探讨,描述并建立铸态IN718合金微观组织及元素分布与均匀化时间/温度之间的定量关系。结果表明:枝晶干与枝晶间Nb元素的成分差异是合金均匀化处理的主要限制性环节;在温度分布均匀的前提下,1 160℃时Laves相完全回溶所需最短时间(min)与铸态二次枝晶间距(μm)的关系可表示为:t11160=0.4671+0.0048λ2+0.0154λ22;提升温度有利于加快Laves相的回溶速度,比延长时间的均匀化处理方式更加高效;第二段均匀化处理时间与枝晶间Nb含量最大值之间也存在定量关系,若铸锭内部二次枝晶间距不大于220 μm,第一段1160℃均匀化处理13 h可完全消除Laves相,再经第二段1200℃均匀化处理超过72 h,可使铸锭成分趋于均匀。最后对传统电渣重熔炉进行改造,建立基于单电源双回路导电结晶器的抽锭式气氛保护电渣重熔新设备。在相同的有效供电功率下分别采用传统/新型重熔工艺初步试制0260 mm的IN718电渣锭,对比研究不同重熔工艺对合金凝固组织和高温/室温力学性能产生的影响,分析新双联路线制备大尺寸镍基合金电渣锭的可行性。结果表明:导电结晶器特殊的电流路径改变了液态渣池和金属熔池的温度分布,更有利于脱除硫元素并降低氧含量,且金属轴向结晶特征更加显著,铸锭内部冷却条件也相对更加均衡,电渣锭表面质量和内部质量同步获得改善;在相同热加工和热处理流程前提下,新型重熔工艺制备的合金样品各项室温力学性能与传统电渣重熔接近,但在650℃/700 Mpa条件下的有效使用寿命提高了约43%,高温蠕变抗力以及高温拉伸性能也均显著提升。