【摘 要】
:
谐波齿轮传动是一种新型传动形式,相比于蜗杆减速器、行星减速器等国内常用大速比减速器,谐波减速器结构更简单,体积更小,承载能力更大,传动精度更高。广泛应用在在航空航天、雷达、医疗器械、机器人等高精密传动领域。由于谐波传动主要依靠柔轮弹性变形来传递运动,因此柔轮的变形对于谐波传动性能至关重要,本文以无公切线双圆弧齿廓谐波减速器为研究对象,采用MATLAB参数化与Workbench有限元法探究谐波齿廓参
【基金项目】
:
国家重点研发计划(2018YFB1304800); 广东省重点领域研发计划项目(2020B090926002);
论文部分内容阅读
谐波齿轮传动是一种新型传动形式,相比于蜗杆减速器、行星减速器等国内常用大速比减速器,谐波减速器结构更简单,体积更小,承载能力更大,传动精度更高。广泛应用在在航空航天、雷达、医疗器械、机器人等高精密传动领域。由于谐波传动主要依靠柔轮弹性变形来传递运动,因此柔轮的变形对于谐波传动性能至关重要,本文以无公切线双圆弧齿廓谐波减速器为研究对象,采用MATLAB参数化与Workbench有限元法探究谐波齿廓参数和结构参数对谐波传动啮合特性和柔轮变形的影响规律,在此基础上提出了基于有限元法的谐波双圆弧齿廓设计和修形,并将其延伸到谐波的其他齿廓,在改变径向变形系数的基础上对比不同齿廓的啮合性能和柔轮应力变形情况,为谐波齿廓对比提供更加立体的评价体系。(1)对谐波齿轮传动与谐波减速器的组成和工作原理分别进行了解释阐述,利用will法对各种谐波传动的形式进行了传动比计算公式的推导。在谐波假设的条件上,推导了柔轮的变形方程以及柔轮精确转角关系,并分别推导了基于包络法和改进运动学法的谐波传动啮合理论,给出了各谐波齿廓的齿廓方程。针对空间齿廓啮合的干涉问题,提出了三种不同截面为主截面的柔轮修行方案,为后文的齿廓设计修形实例和多齿非线性接触有限元模型的建立提供理论基础。(2)以CSF-25-80无公切线双圆弧齿廓为例,对双圆弧齿廓的共轭齿廓进行了求解,研究了双圆弧齿廓的共轭特性,并在此基础上阐述了双圆弧齿廓特有的“双共轭”现象的的含义和量化指标。分析了齿廓参数对于谐波共轭特性的影响规律,探究了柔轮结构参数对柔轮变形的影响规律,从啮合状态分析了三种修形方案的优劣,并在此基础上进一步分析了结构参数对柔轮三维修形的影响规律。(3)以无公切线双圆弧齿廓的为研究对象,在分析了谐波传动的啮合特性的基础上,利用有限元法分析柔轮的有限元径向变形,初选确定柔轮齿廓参数后,利用改进运动学法对分别就线性假设径向变形和有限元径向变形,设计与柔轮共轭的刚轮齿廓。并基于线性假设径向变形量和有限元径向变形量对柔轮齿廓进行三维齿廓修形,并对比分析线性假设法设计修形与有限元法设计修形的柔轮应力情况。利用有限元法提高了谐波双圆弧齿廓的设计和修形的准确性和实用性,为实际的谐波齿廓的齿廓设计和修形提供一定的参考。(4)以公切线双圆弧齿廓、无公切线双圆弧齿廓以及渐开线齿廓为研究对象,并通过有限元得到柔轮的真实变形情况,在此基础上对各齿廓进行设计和修形,分别探究在不同径向变形量情况下,各个谐波齿廓的共轭特性、运动轨迹以及应力变形情况,通过对比得出各个齿廓在啮合性能和应力变形上的优劣,从而为谐波传动齿廓评价选用提供更加完整的理论基础。
其他文献
机舱罩是保护海上风电机组的大型壳体构件,长期受到海上风、雨雪的侵蚀,气象环境恶劣,对结构的强度、刚度要求高。对此,本文以某大兆瓦海上风机机舱罩为研究对象,综合运用CFD和有限元分析方法,对大兆瓦海上风机机舱罩进行外形气动减阻优化和结构轻量化设计研究,得到满足性能要求的轻量化结构设计方案。论文的研究成果为大型海上风电机组机舱罩的轻量化设计提供了解决方案,具有较高的工程应用价值。论文主要研究内容和成果
疲劳寿命是评估构件使用性能的重要指标,而残余应力对构件的疲劳寿命存在显著的影响。喷丸是一种能够有效提高构件抗疲劳性能的表面强化技术,因价格低廉、操作方便被广泛应用于机械、船舶、航空航天等领域。但喷丸引入的残余应力在疲劳加载过程中不能保持稳定,会随循环周期发生松弛现象,如果不考虑残余应力松弛对疲劳寿命造成的影响,会使预期寿命偏离实际,从而给疲劳寿命的预估带来不确定性。本文以2024-T351铝合金材
随着高性能工程塑料迅猛发展,塑料齿轮的综合力学性能不断提升。塑料齿轮被越发广泛地应用于动力传递领域。然而,其运行温度带来的服役寿命、可靠性和传动效率降低等问题,显著制约了塑料齿轮向更大功率传递领域的发展。诸如塑料齿轮粘弹性接触行为、运行温升、多热源效应等机理尚未阐明,而运行温度对齿轮的模量影响显著,应力-变形-温度场之间的相互影响和耦合机制进一步增加了塑料齿轮运行温度场分析的复杂程度。影响塑料齿轮
课题来源于国家自然科学基金项目“含夹杂或裂纹非均质材料摩擦磨损的微观机理研究”(51875059)和重庆市自然科学基金面上项目“高熵合金摩擦磨损微观机理研究”(cstc2020jcyj-msxm X0850)。近年来,高铁、航空航天、国防科技等领域对工程材料提出了更高的要求,材料内部的夹杂或杂质往往会引发材料次表面微裂纹的萌生,从而导致机械关键零部件的失效。实验表明夹杂物的形状、大小以及分布形式等
目前被广泛应用于过金属壁的超声波无线能量传输技术大多是基于超声体波为能量载体。由于超声体波的传播特性,要求超声换能器必须在金属壁内外两侧严格地对中放置,才能对结构逐点进行检测,因此基于超声体波式的无线能量传输技术存在检测效率低、成本高等不足,在一些有严格空间限制的密闭场合也缺乏适用性;且体波方式仅能实现一对一的能量传输,无法满足大量分布式传感器的供电需求。基于以上的两个问题,限制了超声体波在无线能
石墨烯具有超高力学强度、易于剪切的层间界面,且超薄至几个原子层厚度,可开发应用作为固体润滑材料。环境水分子可能吸附到摩擦界面,对系统摩擦学行为产生重要影响,但其作用机制尚未有足够深入的研究。本文应用第一性原理分子动力学模拟方法,研究了界面水分子、石墨烯表面官能团等对石墨烯/石墨烯系统、二氧化硅/石墨烯/二氧化硅系统摩擦学行为的影响。主要研究工作如下:模拟了石墨烯/石墨烯片层间的滑动摩擦过程,研究了
随着智能产品的不断发展,具有传动比大、结构紧凑、反向自锁以及工艺性好等优点的蜗杆斜齿轮传动副越来越多应用于智能家居、服务机器人及自动驾驶汽车等领域。但蜗杆斜齿轮传动副的齿面点接触、同时啮合齿数少、相对滑动速度大等特点,导致其存在承载能力小、效率低、振动噪声大等不足,是制约蜗杆斜齿轮传动副向高品质发展的瓶颈技术。论文结合深圳XX公司的“小模数蜗杆斜齿轮传动关键技术研究”科技成果转化项目子任务,以小模
风电齿轮箱是风电机组的关键核心传动部件,常安装在狭窄的机舱内部,需要在阵风、湍流风等恶劣环境下长期运行,会受到输入扭矩波动、时变啮合刚度以及时变传动误差等复杂的多源内外激励影响,造成风电齿轮箱传动系统中齿轮、轴等构件承受明显的交变载荷。其中,齿轮箱平行级齿轮转速高、受载频繁,弯曲应力循环和应力集中效应容易导致齿根产生裂纹甚至断齿故障。据统计,风电齿轮箱38%的故障出现在平行级传动系统,因此开展风电
周期性设计是工程中常见的工程结构设计方法之一,采用周期结构既能节约设计成本还满足美学设计观念。过去,它的力学性能被广泛研究,但对其独特的波传播特性研究是最近十几年才兴起的新领域。由于波在周期结构中会发生散射,在某些频域带内不能传播,被称为禁带或带隙,这一特性有望用于结构的减震隔振设计。本文利用这一原理,通过周期性设计工程结构实现振动隔离带隙。周期结构中带隙主要有两类:布拉格带隙和局域共振带隙。布拉
近年来智能汽车的研究开发如火如荼,许多低级别自动驾驶辅助功能(Advanced Driver Assistance System,ADAS)如车道偏离预警、前方碰撞预警、自适应巡航控制等已经在越来越多的量产车上实现,各大汽车厂商所研发的量产车基本具备L2级别的自动驾驶功能,能够在高速公路等环境较为简单的交通场景下行驶。城市工况是常见的交通工况之一,但其包括众多的环境车辆以及行人等交通场景要素而区别