论文部分内容阅读
本文以农林业主要蛾类害虫为研究对象,利用数学形态学和几何形态测量学方法对5总科8科39种蛾类昆虫进行了数字化分类鉴定研究,并分别在总科、科及种分类阶元上探讨了这些方法在昆虫分类中应用的可行性和可靠性及筛选出的用于分类鉴定的特征参数的重要性。首先利用数字化技术获取蛾翅和蛾翅脉图像,并对蛾翅图像进行阈值分割和平滑去噪等预处理操作。然后利用BugShape1.0软件从蛾前后翅图像中提取矩形度、延长度、叶状性、偏心率、球状性、似圆度和不变矩Hu1、Hu2等共计26项与大小尺度和方向均无关的数学形态特征,以用于蛾类昆虫在各阶元上的分类鉴定。对分类正确率较低的种类,再利用几何形态测量学方法对蛾翅脉图像进行进一步的分析。研究结果表明,利用蛾翅数学形态特征成功地实现了对蛾类昆虫在总科、科及种分类阶元上的分类鉴定,其中仅有天蛾科昆虫的识别正确率较低,回归和交叉判别的正确率分别为:87.7%和84.0%,在总科和科阶元以及其它蛾类昆虫种类的识别正确率均较高。在总科阶元上的回归和交叉识别正确率分别为100.0%和97.4%,筛选出了6项特征参数用于分类鉴定,其重要性大小为:(FW矩形度、FWHu5、HW偏心率)>HW似圆度>(HW矩形度、HWHu5);科阶元上的识别正确率分别为100.0%和92.1%,筛选出的6项特征参数重要性大小为:(FWHu6、FW矩形度、FWHu5)>HWHu2>(HW似圆度、FW似圆度)。在种阶元上的回归和交叉识别正确率均大于93.3%,筛选出的用于夜蛾科昆虫分类鉴定的11项特征参数的重要性为:(FW偏心率、FWHu5、FWHu7)>FWHu2>FW似圆度>FW球状性>FWHu3>(FW叶状性、FWHu1、FWHu6)>FWHu4;筛选出的用于刺蛾科昆虫分类鉴定的7项特征参数的重要性为:(HW叶状性、HWHu7)>(HWHu6、FWHu5、FW叶状性)>(FW矩形度、HW延长度);用于灯蛾科分类鉴定的13项特征参数的重要性为:(FWHu3、FWHu7、HWHu7、HW偏心率)>(HWHu4、HWHu3、FW似圆度、FW球状性、FWHu4)>(FW延长度、FWHu5、FW叶状性、FWHu1);用于枯叶蛾科分类鉴定的13项特征参数的重要性为:(HWHu3、FW偏心率、FWHu6、FW球状性)>(FW似圆度、HW矩形度、FWHu4、FWHu3、FWHu1)>(FWHu2、HW延长度、FW矩形度、HWHu1);用于舟蛾科分类鉴定的11项特征参数的重要性为:(FW偏心率、HWHu1、FWHu5、FW矩形度)>(FW球状性、FW似圆度、FW叶状性、HW矩形度)>(HWHu7、FWHu1、FWHu2);用于毒蛾科分类鉴定的8项特征参数的重要性为:(FW似圆度、FWHu4、HW矩形度)>(FW延长度、FWHu1、HWHu6)>(HW叶状性、FW矩形度);用于尺蛾科分类鉴定的8项特征参数的重要性为:(FWHu2、FW叶状性、HW似圆度)>(HW延长度、HWHu6、FWHu1)>(FWHu3、FW偏心率)。蛾翅数学形态特征在不同分类阶元或不同种类上应用的有效性和重要性有所不同,但是,在各分类阶元上,利用最终筛选出的蛾翅数学形态特征能够很好的用于其分类鉴定,这表明各数学形态特征在不同的分类阶元上有着不同的作用。对于分类识别正确率较低的天蛾科昆虫,利用几何形态测量学方法对其蛾翅脉图像进行了进一步的研究,利用TpsDig软件按翅脉交点顺序共选取了前翅17个翅脉交点作为标记点,并利用软件TpsSuper和TpsRelw对其进行了普氏叠加和相对扭曲分析,最后天蛾科昆虫的回归和交叉识别正确率达到了100.0%和99.7%。这表明蛾翅数学形态特征和翅脉的几何形态特征均具有很好的分类和鉴别作用,为未来逐步实现蛾类昆虫的自动识别奠定了基础。最后利用人工神经网络方法对夜蛾科昆虫做了进一步的分类鉴定研究,研究结果表明采用BP神经网络可以实现昆虫的分类鉴定,且试验表明与数学方法相结合,如采用主成分分析对昆虫的数学形态特征数据进行预处理,可以提高BP神经网络对昆虫分类鉴定的准确度。这为日后逐步形成自动鉴定系统做了初步的探索研究。