【摘 要】
:
非均相电芬顿技术通过阴极氧还原反应(ORR)原位产生H2O2,进而利用固体催化剂活化H2O2生成强氧化性的·OH,近年来在废水处理领域被广泛研究。然而,ORR表现出通过四电子途径生成H2O或通过二电子途径生成H2O2的多产物特性,导致活化H2O2产·OH的可控性差、产率低。分步进行高效H2O2生产及H2O2的催化活化为非均相电芬顿提供了另一种反应途径。分别制备高H2O2产率、高H2O2活化利用率的
论文部分内容阅读
非均相电芬顿技术通过阴极氧还原反应(ORR)原位产生H2O2,进而利用固体催化剂活化H2O2生成强氧化性的·OH,近年来在废水处理领域被广泛研究。然而,ORR表现出通过四电子途径生成H2O或通过二电子途径生成H2O2的多产物特性,导致活化H2O2产·OH的可控性差、产率低。分步进行高效H2O2生产及H2O2的催化活化为非均相电芬顿提供了另一种反应途径。分别制备高H2O2产率、高H2O2活化利用率的电极材料,对提高非均相电芬顿催化性能的研究有一定的意义。反应器的构建是电芬顿反应的关键影响因素,相较于传统的间歇式或平行流反应器,流通式反应器有利于缩短反应物分子到电极的扩散距离、提高电极活性位点的暴露面积。此外,常规非均相电芬顿电极的制备以涂覆为主,活性物种易于脱落、团聚,电极稳定性差。通过热压成型工艺制备的一体式流通电极能够有效防止催化剂脱落、增强反应物分子扩散,从而提高电芬顿反应的催化活性。因此,本文通过优化热压成型工艺,分别构建了以碳黑(CB)、聚四氟乙烯(PTFE)改性碳纤维作阴极的流通式电化学合成H2O2系统和以FeOCl改性碳纤维作阴极的流通式电化学活化H2O2系统,通过调节CB、PTFE的负载量来提高H2O2产率、调节FeOCl的负载量来提高H2O2有效转化为·OH的利用率,从而实现有机污染物的高效去除和矿化。本文的研究成果如下:(1)制备了一种CB、PTFE改性的碳纤维(CF)电极,通过优化热压成型工艺的操作参数,提高电极电化学合成H2O2的性能。在调节CB和PTFE的质量比为1:5时,以100℃、1.0 MPa的条件热压30 min制得的CF1/5-1.0/100/30电极表现出更高的H2O2产量(0.47 m M)。600 min内稳定的H2O2产量(0.47 m M)证实了热压成型制备出的电极具有良好的稳定性,为流通式电极制备提供了新的思路。(2)依据上述探究的热压成型工艺制备FeOCl改性碳纤维阴极(CF-10Fe)并设计了一种流通式电化学活化H2O2系统,通过促进H2O2催化活化以提高·OH产量、实现有机污染物的降解。CF-10Fe电极上的·OH产率高达0.99 mmol L-1,相应的H2O2利用率为9.94%。在水力停留时间(HRT)为2.4 min、10 m M H2O2、10 m A、p H 7的条件下,CF-10Fe电极通过电化学活化H2O2去除99.0%的苯酚,相应的TOC去除率达到了67.4%。CF-10Fe电极的电化学活化H2O2系统对有机污染物磺胺甲恶唑(SMX)、酮洛芬(KTP)、布洛芬(IBP)、阿特拉津(ATZ)表现出96.7%~99.8%的去除率。此外,CF-10Fe电极可以有效处理实际石化废水二级出水,COD从77.6 mg L-1降低为42.3 mg L-1,符合中国城镇污水处理厂污染物排放一级A类标准(GB 18918-2002,50 mg L-1)。
其他文献
光声断层成像(PAT)是一种非侵入性混合成像模式,用于获取有关半透明介质内光吸收结构分布的信息。它基于光声效应,通过脉冲激光激发超声波,结合了光学成像的高对比度和超声的良好分辨率并且具有无创特性,在生物医学领域具有巨大的应用潜力。图像重建算法是光声断层成像的关键技术。图像重建质量很大程度上取决于采集到的声压信号的完整性,稀疏的测量位置和探测器的有限视野扫描问题会导致不完整的声压信号,从而限制重建的
在使用真空热压成型技术制作复合装甲材料时,空压包是保证制备材料处于真空状态的必备工具。然而空压包是由两张真空膜涂胶制成,因涂胶工艺问题致使其可能存在微泄漏孔。一般当泄漏量大于0.5mm孔径当量时,空压包内难以到达一定的真空度,将导致热压成型出来的复合装甲材料达不到技战指标。因此有必要对空压包是否存在泄漏进行检测识别,保障复合装甲材料的成品率。本文基于真空容器泄漏检测原理,设计了空压包泄漏检测仪,实
X射线计算机断层(Computed Tomography,CT)成像技术是一种高效地无创诊断技术,在辅助临床诊疗方面发挥着至关重要的作用。高效可靠的CT重建算法是CT成像技术中重要的一个环节。临床患者在CT检查过程中会伴随辐射风险,过量的辐射会诱发白血病和癌症等疾病。稀疏角度扫描是一种常见的减少辐射剂量的方式,但该扫描方式会导致投影数据不完备。若采用不完备的投影数据进行CT图像重建,则会导致重建图
挥发性有机化合物(Volatile Organic Compounds,VOCs)进入大气环境后可能对人体健康和生态环境造成巨大威胁。目前VOCs末端控制技术包括低温等离子体法、光催化法、燃烧法、生物降解法等,其中低温等离子体降解VOCs技术具有快速、设备简单等优点,但该方法也存在能量利用率不高、生成有机副产物等问题。在小间隙内发生气体微放电可以生成高密度的高能电子和活性粒子,有利于有机化合物的降
根据Nyquist采样定理,要保留频率分量中的全部信息,采样率必须是信号最高频率的两倍及以上,而在实际应用的环境中,通常需要将采样率设置得更高才能实现频率参数的准确估计。同时,高采样率下获取的大数据量意味着信号处理的实时运算量和存储量将十分庞大,这对采集、存储等硬件系统提出了更高的性能要求。针对上述问题,本文以实现低于Nyquist采样率条件下的信号重构为工作目标,将线性调频雷达系统中使用的差频信
S31042奥氏体耐热钢方坯连铸过程是一个复杂的动态凝固过程,在铸造过程中极易形成铸造问题,如组织偏析、成分偏析、缩孔缩松、断裂、脱方、鼓肚现象等。以S31042奥氏体耐热钢为主要研究对象,着重从宏观物理场、微观组织和热裂敏感性三方面,探讨了浇铸温度和拉坯速度对连铸方坯质量的影响。首先,概述了奥氏体耐热钢的发展历程以及S31042奥氏体耐热钢的研究现状,阐述了热裂形成机理,分析了热裂判据的研究现状
水资源短缺和水污染是全球的重要环境问题,废水的高效处理是解决水资源短缺的重要环节。工业高盐废水含盐量高,组成复杂,处理难度大。高效的脱盐技术可以有效解决上述问题,但传统热法脱盐技术存在能耗高、占地面积大、投资成本高等关键问题。膜法脱盐技术近年来受到越来越多的关注,其中渗透蒸发法在处理高浓度盐水时具备独特的优势。由于锆基金属有机骨架(Zr-MOF)晶体可调节的孔结构与水稳定性,使得金属有机框架(MO
随着信息化和自动化技术的快速发展,机械臂已经广泛应用于医疗、工业、服务等领域。传统的机械臂路径规划算法大多通过建模和示教实现,这种路径规划方式大多只能完成固定的任务,自适应能力较差,一旦环境或者任务发生改变,就需要重新建模,以适应新的任务或者环境。因此机械臂的路径规划问题作为机械臂研究领域的核心问题之一,被广泛关注。强化学习作为一种能够引导智能体在与环境的交互过程中,自主摸索出决策方法的算法,非常
污水常见处理工艺对有机微污染物去除效率很低,导致其出水对生态系统及人体健康造成潜在风险。目前污水厂主要依靠出水的高成本深度处理来提高OMPs去除率,而原位强化生物反应器中OMPs去除性能的研究则少见。目前关于参与OMPs微生物降解的规律和机制尚不清晰,因此难以有针对性地原位强化污水处理中OMPs的微生物降解。基于此,本研究以污水中典型OMPs-布洛芬为目标污染物,开展了强化序批式生物反应器中布洛芬
无线环境监测系统能够实现大范围、长时间的持续环境监测,因此被广泛应用于污染物监测、灾害防治、农田环境检测等领域中。然而,无线环境监测节点常采用电池供电方式,这种供电方式往往能量有限且更换困难,制约了无线环境监测系统的工作时长和传输性能,易造成传输距离短及数据丢包等问题,亟待开展环境监测系统无线传输低功耗设计研究,以提升无线监测系统长期运行可靠性。本文提出了硬件低功耗设计、动态功耗管理设计、无线传输