论文部分内容阅读
本文以设计高性能半固态Al-Si-Cu-Mg系合金作为研究目标,根据半固态合金的性能要求,参考合金元素和晶粒尺寸对合金凝固组织的影响,确定高强度高韧性合金的成分配比:Si含量小于12.6%,Cu的含量小于5.65%,Mg含量在1%以内。对于不同Si、Cu和Mg含量的铝合金,采用多尺度数值模拟方法,研究了近液相线半连续铸造过程中的微观组织演变,为半固态Al-Si-Cu-Mg合金的优化设计提供理论依据。利用Thermo-Calc软件计算了合金的热力学参数,根据Al-Si-Cu-Mg合金近液相线半连续铸造的特点,建立了描述半连续铸造过程的温度场模型、浓度场模型以及形核与长大模型,通过宏观和微观尺度上的耦合计算,实现了宏观传热、传质与微观晶粒形核、生长及组织演变的模拟。本文模拟了Al-Si-Cu-Mg合金在不同的合金成分、浇注温度和浇铸速度下,对合金微观组织的影响,得到了组织演变与合金成分及工艺条件之间的关系,进而获得适合半固态加工的最佳合金成分和最优工艺条件。模拟研究发现:相对于常规铸造,液相线半连续铸造得到的铸态组织晶粒均匀细小,浇铸温度越低,组织越理想;铸造速度对合金的微观组织影响也较大,铸造速度大,晶粒比较粗大,降低铸造速度有利于均匀细小球形晶粒的形成,并且在0.002m/s左右时,微观组织最为理想;在针对不同合金成分下的微观组织的研究中,Si含量在7%左右时,Cu含量在3%~4%左右时,Mg含量在0.4%-0.8%时,得到的凝固组织均匀细小,晶粒圆度最高,平均尺寸最小,合金力学性能也最为理想,这与实验结果吻合。设计的Al-7%Si-4%Cu-0.6%Mg合金与ZL107工业合金相近,因此其性能优于常规铸造的ZL107工业合金,预测其抗拉强度在320-450MPa以上,伸长率在3%~4.5%左右,硬度HBS值在105HB以上。通过本文对Al-Si-Cu-Mg合金的研究可以发现,多尺度数值模拟是进行合金设计和工艺优化的一个有效方法,这为半固态铝合金设计开辟了一个新的思路。