论文部分内容阅读
本文从卫星对其姿控飞轮性能更高地要求出发,对影响姿控飞轮轴系性能的关键问题进行研究,以期获得长寿命、高性能和高可靠性的摩擦学系统,进而提高卫星寿命和控制精度。针对飞轮润滑系统采用油润滑时低速性能差、转速范围窄,而固体润滑寿命短、摩擦系数大等问题,提出采用固-液复合润滑技术为轴承提供润滑以改善其在启动和低速状态的性能,并实现其低摩擦、宽转速和精确控制等目标。基于液体润滑理论及固体润滑技术,结合摩擦学和界面化学研究固-液复合润滑的可行性;并从材料学、摩擦学、界面化学及流体力学等学科交叉融合的角度,采用理论分析和实验相结合的研究方法分析固-液复合润滑系统的摩擦磨损性能和机理。首先建立了固-液复合润滑在零速启动、边界润滑、混合润滑及弹流润滑摩擦模型,并对各状态下的减摩机制进行研究;并建立球-盘式摩擦学试验系统,先后完成对磁控溅射MoS2膜和化学气相沉积DLC膜的摩擦和磨损试验,从试验角度研究润滑条件、速度和载荷对其摩擦学特性的影响,进而分析膜层减摩机制和耐磨特性,从而为固-液复合润滑的应用提供理论和实验依据。理论和试验结果表明:固-液复合润滑能有效改善摩擦副润滑性能,在零速启动、边界润滑、混合润滑或弹流润滑等各状态下的摩擦系数均得到有效降低,零速启动和低速时性能的改善可提高飞轮的可靠性和控制精度,而中高速时摩擦的改善要有效降低飞轮功耗,延长卫星寿命。由于MoS2膜的减摩效果优于DLC膜,其在提高飞轮过“零”性能和提高低速控制精度等方面更具有优势,但MoS2膜在有液体润滑剂的条件下耐磨性能磨损寿命明显降低;DLC膜在有液体润滑剂时的磨损寿命反而提高,能更长久发挥固-液复合润滑性能的优势,对降低飞轮电机功耗、延长卫星寿命具有重要意义。为研究润滑剂空间挥发损失及其对轴系润滑寿命的影响,建立了飞轮轴系润滑系统油气分子物理循环模型,并完成模拟真空条件下润滑油的挥发试验;通过理论和试验结果的对比分析,提出降低轴系流导,减少润滑油的挥发损失率,对提高轴系润滑寿命具有重要意义。通过干摩擦条件下的运转试验和对电流特性和摩擦表面形貌的分析,研究润滑不良时氮化硅陶瓷球混合轴承的临界失效特性,对分析飞轮轴系临界性能具有重要意义。