【摘 要】
:
从十七世纪到十九世纪后半期,人们设法用各种方法求微分方程(常微分方程和偏微分方程)的解,随着历史的发展,求解微分方程的边值问题遇到的困难越来越大,随着科学技术的发展和进步又
论文部分内容阅读
从十七世纪到十九世纪后半期,人们设法用各种方法求微分方程(常微分方程和偏微分方程)的解,随着历史的发展,求解微分方程的边值问题遇到的困难越来越大,随着科学技术的发展和进步又提出大量的偏微分方程边值问题。偏微分方程边值问题起初研究直接来源于物理学和几何学的问题,后来发展到一门独立的分支。本课题针对生物学,物理学,生物化学等学科许多问题的研究归结为非线性偏微分方程边值问题的求解。其中,很大一类是椭圆型偏微分方程边值问题的求解,因而,探究这类方程边值问题解的存在性问题引起了许多数学工作者的极大兴趣。这类问题的解决可以对来自生物学。物理化学等学科提出的问题给予解答,但偏微分方程,尤其是非线性偏微分方程的复杂性与多样性使得这类问题的研究的难度很大。 第一章简述了微分方程的可解性及边值问题的历史背景和发展,及本文的主要工作。 第二章利用了上、下解方法,不动点定理等理论研究了带小边值条件的半线性椭圆型方程正解的存在性及不存在性。 第三章研究了微分方程的定解问题,介绍了两种求微分方程近似解的方法,并给出具体实例进行验证。 第四章总结与展望。
其他文献
微分几何是一门历史悠久的学科.甚至可以这样说,在微积分诞生的同时就诞生了微分几何,不过这门学科的生命力至今仍很旺盛.近年来它对其他分支的影响也越来越深刻,对于自然学科中
摘要:桥梁施工管理关系到工程质量的好坏,工程质量的好坏又关系到人民生命财产的安全。本文分析了我国公路桥梁工程施工管理的发展现状及特点,探析了影响桥梁工程施工管理的各种因素,提出了加强桥梁施工管理的措施,供同行参考借鉴。 关键词:公路桥梁建设;施工;施工管理;措施 Abstract: the bridge construction management in relation to the st
压缩感知是一种新的采样理论,若原始信号具有可稀疏性,在远小于Nyquist采样率的条件下,利用随机采样获取信号的离散样本,并运用一定的非线性重构算法重建信号。本文主要研究
目前,P2P(Peer-to-Peer)网络不仅是学术领域也是应用领域研究的热点。在P2P网络中,网络节点既是服务器又是客户机,使得网络更大的利用了闲散资源,又因为其拥有独特的网络结构
本文主要研究了一类二阶二次变系数非线性向量微分算子的不变子空间,并给出具体应用的例子.本文所做主要工作如下: (1)考虑了二次变系数微分算子 此处公式省略 (2)以
复合材料由于其材料性能具有突出的优点,因而在工业领域得到了越来越广泛的应用.其断裂力学分析对材料的优化设计至关重要,由于复合材料中的动态断裂行为非常复杂,从而使得其
摘要:随着国家基础设施投资加速,大量的工程开工,建筑施工企业原有的技术力量、劳动力严重不足,因此,农民工随机大量加入,参与工程施工,并逐年增加。由于绝大部分农民工文化知识偏低,安全意识比较淡薄,劳务输出单位培训不到位,施工现场违章作业、违章指挥等因素造成安全生产事故频发。对此,笔者就建筑行业农民工安全管理现状和特点,针对当前建筑行业农民工的安全管理中存在的突出问题进行探讨,提出了解决问题的基本措施
本文利用多元统计分析方法,基于2006年中国统计年鉴的数据,对我国31个省、市国有及规模以上非国有工业企业经济效益的发展水平进行了排序和分类,从总体上看,发展水平呈现正态分布