【摘 要】
:
近年来,汽车产业在移动互联、大数据及云计算等技术的推动下不断向着智能化、网联化方向发展,车联网在支持城市交通系统中安全相关应用方面具有广阔前景。在车联网中,高效的信息传播可以让车辆更好地了解潜在的风险和交通异常,对于提高交通安全性和效率具有重大意义,因此目前有大量的研究集中在车辆间安全消息广播方法的设计上。然而,现有的安全消息广播方法往往基于当前的信道状态或网络拓扑结构进行消息传输,只考虑最小化安
论文部分内容阅读
近年来,汽车产业在移动互联、大数据及云计算等技术的推动下不断向着智能化、网联化方向发展,车联网在支持城市交通系统中安全相关应用方面具有广阔前景。在车联网中,高效的信息传播可以让车辆更好地了解潜在的风险和交通异常,对于提高交通安全性和效率具有重大意义,因此目前有大量的研究集中在车辆间安全消息广播方法的设计上。然而,现有的安全消息广播方法往往基于当前的信道状态或网络拓扑结构进行消息传输,只考虑最小化安全消息的端到端时延,对历史轨迹数据中蕴含的丰富信息挖掘与利用不足,也不能及时感知网络的链路状态并调整网络结构,同时缺乏对安全消息覆盖范围和持续时间的考虑。本文通过提取车辆历史轨迹数据中蕴含的链路稳定性特征和出行行为特征,提出了一种新的城市交通场景下的安全消息广播方法。本文的主要研究工作如下:(1)针对网络和车辆轨迹特征提取的问题,提出基于车辆历史轨迹数据的特征提取方法。利用谱聚类算法,通过求解最优化问题对历史拓扑结构进行分析,获取不同时刻、不同区域的链路稳定性特征;利用半马尔可夫模型对轨迹数据进行分析,统计车辆的状态转移概率,并基于此预测出车辆未来所处的位置。(2)针对城市环境下的安全消息广播问题,提出基于临时预警网络的分布式安全消息广播方法。根据时空相关的链路稳定度特征和车辆行驶轨迹特征,选择适当的中继节点构建临时预警网络,在兴趣区域内进行安全消息的分发。选择中继节点时,综合考虑区域的相似度、链路的稳定性以及广播区域和方向等因素。在不同条件下的实验结果表明,相比现有方法,本文所提出的安全消息广播方法在达到最高覆盖率时平均能够减少约25%的时延。(3)针对安全消息持续性广播的问题,通过链路状态检测和重选机制完成对网络结构的感知和维护,保证新进入兴趣区域的车辆及时收到消息。此外,多条安全消息也可以通过共用临时预警网络结构的方式并行传输。实验结果表明本文提出的方法能够保证安全消息在兴趣区域内70%左右的覆盖率,复用网络结构进行多条安全消息的并行传输相比单独传输平均能减少约35%的时延。
其他文献
在移动边缘计算中,用户将计算任务卸载到边缘服务器处理,减少任务的时间延迟和能量消耗,并提升用户的体验。在现实场景中,用户移动和计算需求不断产生会影响到任务的卸载,而任务卸载会直接影响到用户的收益,因此需要高效的任务卸载策略。边缘服务器对资源的定价会影响到用户对任务的卸载,从而影响到边缘服务器的收益,因此需要高效的资源定价策略。本文在用户处于移动状态且计算需求不断产生的情况下,当边缘服务器对资源固定
商业银行等金融机构积极推进高水平的数字化转型,如何在这一转型过程中通过有效的治理手段实现可持续的转型发展成为关键。本研究基于价值创造理论,结合国内外商业银行转型实践,通过扎根理论法和案例研究法,提出“价值创造三维治理模型”,以及具有适应性的治理路径和治理对策。研究发现,商业银行数字化转型的治理目标是通过价值网络中不同主体间的协同和互动提升金融资源的优化配置效率和价值创造能力,实现价值创造体系的持续
本文基于2015—2020年沪深A股上市企业的数据,采用文本分析技术构建企业数字化转型和企业价值研究模型,实证检验数字化转型对企业价值的影响及其作用机制。研究结果表明:(1)数字化转型能够显著促进企业价值的提升;(2)数字化转型能够提升创新效率,且创新效率在数字化转型与企业价值之间起部分中介作用;(3)异质性分析表明,在东部地区、高市场化地区和低环境不确定性情境下,数字化转型对企业价值的促进作用更
人脸特征点定位是指自动定位人脸特征点位置的方法,在人脸检测、人脸识别和面部表情分析等领域有着十分广泛的应用。级联姿态回归在人脸特征点定位表现优异,该算法基于初始形状,利用回归器逐步回归,逼近人脸真实形状。然而,当人脸包含局部遮挡时,人脸特征变得不可靠,从而导致人脸特征点定位和遮挡检测准确率降低,甚至导致人脸特征点定位失败。针对以上问题,本文提出如下两个解决方案:1)针对局部遮挡导致人脸特征点定位准
随着白天和晚上监视数据爆炸性的增长,跨模态行人重识别成为新兴的挑战。与只处理模态之内差异的传统的行人重识别相比,跨模态行人重识别遭受了由不同类型成像系统造成的额外的跨模态差异。因此提出红外图片着色的方法来消除模态差距。但是生成对抗网络的着色方法依然存在一些问题,本文就这些问题进行一些研究。最近的各种研究工作提出了各种生成对抗网络模型,以将可见模态转换为另一个统一模态,旨在弥合跨模态鸿沟。但是,它们
随着大数据、人工智能等技术的发展,数字经济时代已经到来,传统企业的数字变革也是大势所趋。索菲亚是家居定制行业中最早进行数字化转型的企业,最终实现了智能制造以及流程信息全打通的愿景。文章以索菲亚为例,对其数字化转型的动因、路径以及企业的盈利、营运、偿债、成长能力和EVA指标进行分析,以期为其他企业进行数字化转型提供参考。
叶脉是支撑叶片生长、运输叶片所需养分与光合作用产物的重要结构。叶脉根据所处位置、生长趋势和宽度等因素可以将其分级,例如一级叶脉定义为从叶柄向叶尖延伸的最粗叶脉,叶脉层级相较于叶脉网络更能表征叶脉的特性。叶脉的层级分割对图像分类、叶片建模和分子育种等领域具有重大意义。然而,当前对叶脉的研究大多停留在叶脉网络,由于层级叶脉复杂难以定位,更能发掘叶脉的特性的叶脉层级却少有涉及。一方面各级叶脉在色彩、亮度
生成一直是自动摘要领域的难题,现有的文本自动摘要方法在处理长文本的过程中,存在准确率低、冗余等情况。无法达到令用户满意的性能效果。主要问题有两点:其一,目前以卷积神经网络(CNN)/循环神经网络(RNN)为编码器的抽取式文本摘要模型,在进行长文本抽取时,模型对文本内容的理解不够,抽取效果极不稳定,无法抽取到长文本的主旨句。其二,目前单纯的抽取式摘要模型存在性能瓶颈,由于抽取式文本摘要的粒度过大,进
近年来,生物医学领域研究取得飞速进展,大量携带研究成果的文献被发表。尽管有人力物力去手动整理这些文献中的信息,但仅仅依靠人力对信息进行更新远远跟不上文献发表的速度。与通用领域相比,生物医学文献的信息抽取存在大量的嵌套实体和重叠关系等问题。因此,如何准确的从大量生物医学文献中抽取出有价值的知识,是目前生物医学领域信息抽取的重大挑战。为此,本文研究了生物医学领域的实体识别和关系抽取。对于实体识别,本文
近年来,得益于高性能计算机或分布式系统的超强计算能力,深度学习方法在计算机视觉相关问题上,尤其是对图像分类任务的研究,取得了长足的发展。然而,在实际计算操作或者现实生活中,出于安全或者隐私等方面考虑,常常面临难以获取样本或者图像样本量过少的问题,这在研究领域内被定义为小样本学习问题。而当涉及到小样本问题时,高性能的计算能力或是传统深度学习模型似乎显得力不从心。针对目前计算机视觉中的热门问题,本文对