论文部分内容阅读
精密超精密机床是事关国计民生的战略性装备,在国防工业和民用光学工业领域关键零件的精密超精密加工中具有独特而广泛的用途。液体动静压电主轴是精密超精密机床的核心功能部件,其回转精度对机床的加工精度具有决定性影响。但由于主轴动不平衡、轴颈形状误差、轴系偏心诱发的电磁激振等因素的综合作用,导致主轴回转精度的分析预测十分困难,目前国内外在这方面的研究尚不系统深入,亟需研究形状误差及电磁力作用下的液体动静压电主轴回转精度变化规律。(1)建立了基于Timoshe nko梁的“轴承—磁拉力—磨削力—主轴系统”转子动力学模型及回转精度评定方法。采用Timoshenko梁理论和拉格朗日动力学方程推导了主轴单元质量矩阵、单元刚度矩阵和单元阻尼矩阵;采用Matlab符号积分功能模块得到了重力、动不平衡力的单元载荷向量;通过整体质量、刚度和阻尼矩阵及整体载荷向量的组装构建统一的基于Timoshenko梁的“轴承-磁拉力-磨削力-主轴系统”动力学模型。采用Wilson-θ数值算法,编程实现了对该动力学模型的求解。研究了圆图像同心圆半径之差、最小包络圆的半径值和敏感方向同步误差峰峰值三个回转精度评价指标的特点及适用范围。通过与现有文献中固有频率值的对比,验证了所建立动力学模型和所提出算法的有效性。(2)根据平行平板扩散流动模型及两平板相向运动产生挤压流量的物理现象,提出了基于有限体积的小孔节流深浅腔动静压轴承非线性油膜力的计算方法。为解决固定网格难以有效消除低频迭代误差的难题,采用多重网格迭代技术加快了收敛速度,提高了计算效率。利用欧拉迭代法求出了主轴的平衡位置,施加位移、速度小扰动条件后得到了轴承动力特性系数。采用文中方法研究了供油压强、主轴转速、进油孔径、浅腔深度、初始油膜厚度等参数对小孔节流深浅腔动静压轴承稳态特性的影响规律。数值验证了工程经验中深浅腔动静压轴承的浅腔深度约为初始油膜厚度2倍的合理性。在搭建的实验平台上,测量了不同转速及供油压强下油腔的压强值,验证了基于有限体积法的非线性油膜力计算方法的正确性。(3)针对转子倾斜偏心诱发的不平衡磁拉力计算模型尚不完善的现状,提出了利用气隙域各个节点的气隙磁阻及Maxwell应力求解不平衡磁拉力的半解析解法。通过与现有文献对比研究,结果表明:文中磁拉力计算方法正确可信且较有限元法计算效率更高;在其余电磁参数相同的条件下,要尽量减少磁拉力引起的回转误差,应保证电机极对数不少于2。采用Ansoft 2D瞬态模块仿真验证了文中给出的某型号电机电磁参数的合理性,并利用文中方法研究了该型号电机不平衡磁拉力及电磁刚度随偏心率及倾斜角度的变化规律。结果表明磁拉力与动不平衡力数量级相同,其对回转精度的影响不容忽视。(4)定量研究了轴颈形状误差对轴承回转精度的影响规律,构建了轴颈圆度误差形成回转误差运动的力学模型,揭示了圆度误差影响回转精度的机理。该模型可解释的规律包括:在不考虑重力和动不平衡力等外力条件下,以及在同心工况时,奇数波圆度误差产生回转误差运动,而偶数波圆度误差不产生回转误差运动;在考虑以上诸外力后,轴颈奇数波圆度误差比偶数波圆度误差对回转精度的影响更为显著;回转精度随转速、圆度误差幅值的增大而降低;轴颈复合圆度误差的奇数波成份对回转精度的影响起主导作用。(5)研究揭示了轴颈形状误差、磁拉力和磨削力等综合因素对电主轴回转精度的影响规律。结果表明:2对极电机的磁拉力和阶跃型磨削力仅改变轴端的平衡位置,对回转精度的影响不大;在相同条件下,当轴颈奇数波圆度误差的幅值足够小时,主轴轴端的回转精度也能达到精密级。轴颈圆柱度误差(锥形圆柱度、鼓形圆柱度及鞍形圆柱度)对主轴轴端回转精度的影响很小。(6)参与搭建了液体动静压电主轴实验台,对主轴的固有频率和回转精度进行了实验测试。结果表明:低阶固有频率的理论计算值与实验值的吻合度较高;同步回转误差的实验测试值及理论计算值均小于1μm,且随转速的变化趋势基本一致。从而验证了所建立模型、所提出算法和研究结果的正确性。本文研究为实现主轴轴心从原点到平衡位置的动态过渡过程的定量仿真、揭示轴颈形状误差对回转精度的影响规律提供了重要的理论方法和有效实现途径,从而为开发新型高精度的液体动静压电主轴和磨削装备提供有力技术支持。