【摘 要】
:
金属及其合金广泛应用于航空航天、交通运输及化工等领域,它们的腐蚀会造成巨大的经济损失和环境污染,高效的金属防护方法是其长久广泛应用的基础,受到了工业界和科学界的广泛关注。近年来,自修复防护膜由于其优良的耐腐蚀性、耐久性和自修复性在金属防护领域引起了极大的关注。针对新型自修复膜的改性和开发及机理,已经开展了大量的实验研究,但自修复膜生长和修复过程尚不明确。实验中对瞬态过程的研究较为困难,而理论模拟方
论文部分内容阅读
金属及其合金广泛应用于航空航天、交通运输及化工等领域,它们的腐蚀会造成巨大的经济损失和环境污染,高效的金属防护方法是其长久广泛应用的基础,受到了工业界和科学界的广泛关注。近年来,自修复防护膜由于其优良的耐腐蚀性、耐久性和自修复性在金属防护领域引起了极大的关注。针对新型自修复膜的改性和开发及机理,已经开展了大量的实验研究,但自修复膜生长和修复过程尚不明确。实验中对瞬态过程的研究较为困难,而理论模拟方法能够从原子层次直接观测作用过程,在该研究中具有一定优势。本文以铝金属作为基底,以PAA和PEI及两者组成的自修复膜为研究对象。采用Bottom-up的研究路线,通过多种不同层次的理论研究方法对PAA和PEI在铝金属表面的缓蚀和自修复膜进行了理论研究。具体工作如下:首先,采用量子化学计算方法研究了PAA和PEI的电子结构性质对缓蚀性能的影响。研究表明:PEI相对PAA具有较低的ΔE、和χ值,较高的、ω和ΔN值均表明了PEI具有更优异的缓蚀性能。质子化PEI分子的计算结果显示随p H的减小缓蚀效率升高。链长对缓蚀剂电子性质影响不大。其次,采用分子动力学模拟了单个PEI分子在羟基化Al(111)表面的吸附,之后进一步采用粗粒化方法模拟了PEI分子溶液在Al(111)表面的成膜过程。研究表明PEI分子在室温下能自发地吸附在金属表面,起到缓蚀作用。该模拟结果和实验报道趋势一致。最后,构建和验证了PAA和PEI在Al衬底和复杂溶液环境中的粗粒化模型及参数,并采用该方法研究了PAA和PEI自修复膜的生长机制和损伤修复机制及影响因素。结果表明:PAA和PEI分子在layer-by-layer自组装膜中会随着扩散逐渐混合。膜层在基底表面的损伤依靠金属对PEI的选择吸附来实现,而上层混合膜自修复通过PAA和PEI的扩散实现。聚电解质的扩散在膜层自组装和自修复过程中均起到主要作用。膜生长影响因素的研究表明,随聚电解质带电量的增加,膜层流动性升高;随聚电解质聚合度的增加,膜层流动性降低。膜性质影响因素的研究表明,随聚电解质带电量增加,膜层流动性降低,即损伤修复速度减慢。随聚电解质聚合度的增加,膜层稳定性增强,流动性降低,损伤修复速度减慢。
其他文献
随着“十四五”规划和2035年远景目标的制定,节约资源、生态环保和可持续发展对我们整个社会越来越重要。开发高效、环境友好的缓蚀剂分子是金属腐蚀与防护的重要研究方向。本论文通过电化学技术、表面形貌分析技术、元素分析技术和理论计算等方法,探究了有机氮杂环分子对X65钢和铜的缓蚀性能及腐蚀抑制机制,为设计和开发高效、绿色的缓蚀剂分子提供实验经验和理论指导。本文研究内容如下:(1)通过电化学阻抗、动电位极
电弧增材制造(Wire-Arc Additive Manufacturing,WAAM)是以电弧为热源来熔化丝材进行定向沉积的一种增材制造技术。近年来,随着贵重、难加工金属材料以及定制型复杂结构件使用量的增加,电弧增材制造凭借其低成本和高灵活性等优点逐渐由航空航天领域扩展至一般民用工业制造领域。然而,由于增材制造过程中电弧热源局部多次加热的特点,由此而产生的复杂温度场导致增材制造结构件内部具有很高
计算机断层扫描(CT)是一种非侵入性的成像技术,在工业检测、医学诊断等领域具有重要的研究和应用价值。医用CT成像时,若检测视场范围内存在金属物体,重建图像将出现大面积的暗带区域或放射状的黑白色条纹,即金属伪影。金属伪影会破坏重建图像的断层结构,降低图像分辨率。针对金属伪影校正研究中存在残留伪影、无法精确重建组织结构等问题,本文重点研究实现三种经典的金属伪影校正方法,并结合深度学习提出改进算法。论文
钒是我国重要的战略资源和现代工业中重要的添加剂,广泛应用于钢铁、化工、航空航天等领域。钒渣是全球最主要的提钒原料。目前工业上广泛应用的钒渣提钒方法有钠化焙烧—水浸法和钙化焙烧—酸浸法,但二者都存在一定局限性。焙烧添加剂钠盐和钙盐带来了严重的三废处置难题,污染严重,资源利用率低。现有的焙烧方法均是将热态钒渣从1300~1500℃冷却至常温处理后再二次升温到800~1000℃进行焙烧处理,使得钒渣的余
计算多体系统动力学是一门利用现代计算机技术来研究多体系统动力学及其响应的新学科。该学科广泛应用于诸多领域与行业中,如航空航天、机器人、车辆工程、工程机械、生物力学等,其目的是建立适用于计算机求解的大型复杂多体系统的力学模型,并寻求高效、准确的数值分析方法。目前在车辆动力学建模的过程中,基于笛卡尔坐标系的全局公式应用最为广泛,该类方法建模过程简单,针对任意多体系统,无论是开环还是闭环系统,它都可以采
在隧道、边坡、石油天然气开采等实际工程中,工程岩体所展现的力学与损伤破裂行为一直是研究的热点,在其众多的影响因素中水扮演着重要的角色。这些存在于微孔隙内的水分对岩石的力学性能和损伤破裂行为有着巨大的影响。这种影响贯穿于岩石受压直到破坏时的各个阶段,充分了解其影响机理用以指导实际工程是十分有必要的。在以往的研究中很少有探究在岩石不同的压缩阶段中,微孔隙中的水分所带来的力学与损伤破裂行为的影响。同时,
直流输电是解决我国能源和环境问题、优化全国范围资源配置的关键技术手段,基于模块化多电平换流器的柔性直流输电占据了未来电力系统发展的重要地位。随着电压等级和传输容量的提高,柔性直流电网朝着多端化方向发展,直流线路保护对于直流电网的安全稳定运行具有重要意义,但同时也是实际应用中面临的难题之一。采用架空输电线路的柔性直流电网故障率高,固有的低阻尼特性使直流短路故障发展迅速,多端出力的叠加加剧了故障对系统
近年来随着纳米技术的迅猛发展,微冷喷涂直写制造技术因其低成本、批量化、高效而在微纳复杂结构制造方面颇具潜力和优势。为获得高精直写线宽,微冷喷涂直写必须实现亚微纳颗粒连续稳定的输送。然而,现有的冷喷涂中采用的“机械给粉、气体送粉”方式,存在粉末颗粒团聚、甚至堵塞管道的问题。针对这一问题,本论文提出一种“液氮给粉、液氮送粉”新方式。为此,必须全面深入理解微纳固体颗粒在液氮中的运动、分布、悬浮和流变特性
中心体是绝大多数动物细胞都具有的无膜包被细胞器,是细胞内主要的微管组织中心。它是由一对中心粒和无定形的中心粒外周物质(PCM)构成的。PCM由数百种蛋白组成,其中包括参与微管成核和组织的结构蛋白质以及许多重要的细胞周期调节因子和信号因子。如何将这些蛋白有序地组织在一起形成一个功能完善的中心体是当前该领域的研究热点和难点。Cep85是一种PCM蛋白,定位在中心体上,我们前期的研究表明它能够通过调节N
随着科学技术的快速发展,机器人已经在工业、服务业、医疗卫生、航空航天等领域得到了广泛的应用。谐波减速器因其结构紧凑、运转精度高、传动比大等优点,在机器人的传动关节应用领域中占据了巨大的市场份额。然而在实际工作环境中,以谐波减速器为传动核心的机器人关节存在柔性、摩擦、外部干扰等多种复杂的非线性特性因素的影响。而且由于物理条件的限制,控制系统只能产生幅值有限的控制输入,控制输入超出执行器的输出上下限时