论文部分内容阅读
随着现代控制理论、多传感器信息融合、大规模集成电路等先进技术的快速发展以及人类社会对汽车产品的完美追求,以提高车辆乘坐舒适性、主动安全性和操纵稳定性为控制目标的底盘集成控制已成为车辆工程领域中的一个研究热点。通过对底盘相关子系统控制功能的主动协调,可以充分挖掘各控制模块的功能潜力,实现底盘一体化全局控制,提高车辆综合使用性能。本文结合国家自然科学基金项目“基于信息融合技术的高速车辆纵横向耦合控制研究”(批准号:50475064)和重庆市自然科学基金重点项目“汽车底盘匹配与控制关键技术研究”(批准号:CSCT, 2006BA6017)研究内容,在综合国内外相关研究的基础上,研究包括电动助力转向、半主动悬架及制动防抱死等主动控制子系统在内的车辆底盘多模型控制系统的协调机理,提出车辆底盘多模型智能递阶控制(Vehicle Chassis Intelligent Hierarchical Control, VCIHC)策略;并针对车辆底盘复杂大系统的特点及多智能体(Multi-Agent System, MAS)理论在解决分布式复杂问题中的优势,将MAS理论引入到车辆底盘主动控制中,建立分级式车辆底盘MAS协调控制策略,以探索如何避免底盘各子系统间的相互冲突与干涉,使车辆底盘在纵向、侧向及垂直方向的运动控制得到全方位的协调与集成,为车辆底盘主动控制技术的研究开发奠定理论基础。论文主要研究工作包括以下几个方面:首先运用“模块化”设计思路,分别采用鲁棒控制、模糊控制等智能控制理论,对底盘多模型智能递阶控制所涉及的电动助力转向、半主动悬架及防抱死制动等主动控制子系统的控制特性进行研究,为车辆底盘的多模型协调控制奠定基础。针对车辆实时控制过程中,作为主控变量和表征车辆自身运行状态的部分关键状态变量较难直接、准确或低成本测量的问题,提出基于强跟踪滤波理论的多传感器线性组合状态最优估计算法,建立车辆状态估计模型,并通过仿真分析对车辆关键状态估计模型及估计算法进行验证,为车辆主动控制中关键状态的获取提供一种准确度较高、成本较低的实时软测量技术。根据车辆实时行驶状态信息和理想参考模型,基于智能递阶控制思想,建立车辆底盘多模型智能递阶控制系统。在智能递阶控制系统中,运用滑模控制理论,设计组织级控制器,得到车辆的广义目标控制力;再结合车辆实际运行状态和预期安全稳定性状态,决策车辆底盘各子系统的协调控制规则,通过对各子系统的协调控制,实现车辆底盘在极端运行工况下的广义多目标集成控制,以提高车辆底盘综合使用性能。结合车辆底盘主动控制子系统模块化和分布式的特点及多智能体理论在解决分布式问题中的优势,将多智能体理论引入车辆底盘多模型集成控制系统,建立底盘多智能体协调控制策略。通过各子系统智能体间的通信、交互和协调控制,实现了车辆底盘控制系统组织级任务的自动规划和协调级控制指令的动态分配,并尽可能地利用车载传感器资源、共享数据和知识,以探索具有较高主动性和自适应性的车辆底盘智能控制策略。最后,针对文中所设计的车辆底盘防抱死制动及电动助力转向子系统间的协调控制策略,进行硬件在环试验研究。