【摘 要】
:
高光谱遥感技术快速发展并被广泛地应用于各个领域。然而,由于高光谱图像的空间分辨率通常是数米或数十米,而实际地物确具有复杂的空间分布,从而导致一个像元内包含多种地物,就形成了混合像元。混合像元的存在会影响到高光谱图像的实际应用,而混合像元分解是一个行之有效的方法。随着高光谱混合像元分解研究的不断深入,真实高光谱图像中的先验知识是可以获得的,而且高光谱数据中含有大量的二维空间信息,表现出了丰富的空间相
论文部分内容阅读
高光谱遥感技术快速发展并被广泛地应用于各个领域。然而,由于高光谱图像的空间分辨率通常是数米或数十米,而实际地物确具有复杂的空间分布,从而导致一个像元内包含多种地物,就形成了混合像元。混合像元的存在会影响到高光谱图像的实际应用,而混合像元分解是一个行之有效的方法。随着高光谱混合像元分解研究的不断深入,真实高光谱图像中的先验知识是可以获得的,而且高光谱数据中含有大量的二维空间信息,表现出了丰富的空间相关性,空间信息成为了一个非常重要的辅助信息,因此基于空间辅助信息对解混算法进行了研究。
针对高光谱图像中先验信息和空间辅助信息利用不充足的问题,本文提出了基于空间信息与先验信息的线性高光谱解混方法,将已知地物间存在的互斥关系作为先验信息应用到解混中,再设定一个结构元素来充分的利用高光谱图像的空间信息,并在平滑约束非负矩阵分解解混得到的第一次解混结果基础上,利用先验互斥信息和空间结构元素来确定每个含有互斥端元混合像元中不含互斥端元的端元子集。在各个像元端元集合已知的条件下,基于全约束线性解混模型,进行含有互斥端元混合像元的二次解混来估计每个像元中各端元的丰度,使得解混结果更接近真实情况。将提出的算法在所构建出的两个模拟数据集和两个真实的真实数据集Urban和JasperRidge上进行实验验证,并与经典4种高光谱解混算法进行了对比实验分析,实验结果表明,本文算法得到的平均均方根误差值相比其他的对比算法有所减小,尤其是在Urban场景中互斥端元中的树的均方根误差值相比第一次解混值减小了0.025,因此相比较于其他几种算法在模拟高光谱数据集和真实高光谱数据集的丰度反演中都具有更好的表现。
其他文献
在大数据时代,图像已经成为人们日常生活中主要的信息载体。然而图像在成像以及传输过程中会不可避免的引入各种失真,引发图像质量的衰减。而图像作为人类主观感知、机器视觉的主要信息源,其质量好坏直接决定所获取信息的有效性。因此如何评价图像质量,以及图像质量是否满足特定场景要求亟待解决,而这个问题的解决需要建立合理的图像质量评价方法与评价标准。客观图像质量评价方法的发展离不开数据库的支持,图像质量评价数据库
字符识别和图像分类是人工智能的一个重要研究方向。通过训练一组给定的输入字符图像和分类标签集合,来实现预测其他输入图像的分类标签的目的。神经网络能够自主提取图像特征,并在字符识别、图像分类、语音识别、视频目标跟踪等各个领域处理任务中具备抽象的能力。神经网络具有出色的性能,但随着“大数据”时代的发展,数据量每日不断增加,信息内容更加复杂,神经网络性能迎来了新的挑战。另外,随着硬件性能的提升,FPGA成
目前,在室内定位系统中,基于接收信号强度指示(Received Signal Strength Indication,RSSI)的测距定位系统接收到的信号会因环境的不确定性出现不可预测的随机变化。行人航位推算(Pedestrian Dead Reckoning,PDR)定位系统也存在错误地估计传感器的参数及左右脚运动不一致等产生累积误差的问题。针对上述定位系统中存在的问题,本文做了以下两个方面的研
随着移动通信技术的飞速发展,人们对基于位置的服务(Location Based Services,LBS)需求日益增长。相比已经成熟的室外定位技术,室内定位在精度、成本、抗干扰等方面有更高的要求。目前最常见的基于接收信号强度(Received Signal Strength Indication,RSSI)的室内定位算法易受室内障碍物、信号多径效应等的影响,使得基于RSSI路径损耗公式计算得到的距
图像块包含图像局部信息且处理过程计算量小,因此基于图像块相似度的方法在图像处理领域应用广泛。考虑到在大多数图像处理任务中图像块相似度度量过程未充分考虑图像块的结构信息,本文采用深度学习中的深度神经网络(Deep Neural Network,DNN)与卷积神经网络(Convolutional Neural Network,CNN)方法提取图像块中包含结构信息的特征,并研究如何构造更有效的图像块相似
在导航服务、移动社交、公共安全以及智慧城市建设等领域中,位置信息的确定成为人们获取泛在服务的重要元素。得益于北斗等卫星系统的全球化部署,室外目标定位已经成为应用范围较广且相对成熟的位置信息来源,然而,卫星信号的遮蔽敏感性导致其无法为室内目标定位提供有力的保障。为此,无线室内定位技术便成为当前网络通信领域的研究热点之一。基于Wi-Fi信号的方法已经在室内定位领域有了多年的研究积累,然而,在大型商超、
半导体行业依旧遵循摩尔定律在高速发展,相应的通信技术亦有了长足的进步,每时每刻都有海量的信息在互联网上进行存储与交互。然而,近年来信息泄露问题频频出现,信息安全问题的重要性日益凸显出来。混沌系统以其独特的动力学行为特性与加密系统设计的两个基本原则“混淆”和“扩散”相符合而在信息安全领域大放异彩。然而,将存在于实数域的混沌系统用数字电路来实现时,发现其最终会坍塌到有限域上,出现短周期和多周期等动力学
随着移动计算和物联网技术的迅速普及,人们对位置导航的需求迅速增加。北斗卫星导航系统(Bei Dou Navigation Satellite System,BDS)、全球定位系统(Global Positioning System,GPS)等可以在室外提供良好的定位保证,然而因建筑物遮挡等原因无法服务于室内定位。无线局域网(Wireless Local Area Networks,WLAN)现已大
图像在人类的社会发展、信息存储、认知学习中发挥着不可或缺的作用,但受到采集硬件设备及网络传输等限制,往往使收集到的图像分辨率不高,利用效果一般。而高分辨图像具有的更多细节信息能够带来更多的帮助,因此,图像超分辨重建技术便应运而生。图像超分辨重建是指在不升级硬件的条件下,从计算机数字技术出发,利用软件提升图像的分辨情况。该技术目前在公安、医学、航空、艺术等多个方面取得了广阔的发展。因此,本文在现有的