论文部分内容阅读
机械化干燥已经普及,但目前利用烘干塔进行干燥作业依然存在一些缺陷,最典型的问题就是无法精确控制出机粮含水率。每次干燥作业都是依靠经验设置风温、干燥时间等一些干燥参数,出现这一问题的主要原因是在线水分测试设备十分昂贵,并且由于烘干塔体型庞大,在干燥作业中测量即时干燥参数非常不便。本文针对这一关键问题,通过参考大型烘干塔的内部结构和缓苏比,设计并加工制造顺逆流玉米干燥机,要求干燥机的生产能力大于8 t/%·h。具体研究内容和结论如下:(1)利用Solid Works软件对干燥机各零部件进行三维设计并完成总体装配工作,并使用Simulation模块对干燥机关键部件进行数值分析。分析结果表明:在角状盒中部应力比较集中,受到的最大应力为7.07×10~7N/m~2,小于材料屈服强度;角状盒表面温度云图无明显变化,传热效果良好;排料轮中部应力比较集中,受到的最大载荷为2.72×10~7N/m~2,最大扭矩为5.44×10~6N?m;(2)使用Flow模块对玉米进行流体分析。分析结果表明:在玉米籽粒初始速度1m/s的条件下,其下落速度随位移的增加呈抛物线型,当位移达到110mm时,瞬时速度达到最大值,约1.85m/s,随即开始下降,直至1m/s;在设定介质密度为1200kg/m3条件下,介质湍流强度随玉米与角状盒边缘距离的增加呈“M”型,当玉米距离角状盒边缘约300mm和900mm时湍流强度最大;设定角状盒流体子域温度为50℃(323K),玉米温度保持在50℃左右无明显变化。(3)为确定干燥机作业时粮温的极限值,在实验室中增加干燥温度(近似于粮温)对玉米品质的影响预试验。试验结果表明:粮温超过50℃时,玉米的电导率和脂肪酸值上升趋势明显增大,淀粉得率下降趋势明显,因此干燥作业时粮温需≤50℃。(4)在粮温≤50℃条件下,验证干燥机的干燥能力、降水幅度和生产能力。试验结果表明:选用湿基含水率为(19±0.5)%的玉米籽粒进行干燥试验,玉米籽粒的干燥不均匀度均<1%、降水幅度为4.55%、破碎率增加值为0.3%、裂纹率增加值为5.2%、单位时间处理量1.8t/h,得到干燥机的生产能力为8.29t/%·h,生产能力满足设计要求。