【摘 要】
:
塔式起重机相对于其他起重机占地面积小,工作半径大,广泛应用工厂码头等地,是一种重要的物料搬运工具。变绳长塔式起重机系统是一类典型的强耦合、非线性、欠驱动系统,而且在工作过程中受到负载、摩擦、环境变化的影响,难以获得其精确全面的数学模型。这给塔式起重机的控制设计带来巨大挑战。本课题针对这类具有未知动力学的欠驱动系统控制问题进行深入研究,探索了塔式起重机位移目标跟踪和缆绳摆角抑制相关的问题,进行了以下
论文部分内容阅读
塔式起重机相对于其他起重机占地面积小,工作半径大,广泛应用工厂码头等地,是一种重要的物料搬运工具。变绳长塔式起重机系统是一类典型的强耦合、非线性、欠驱动系统,而且在工作过程中受到负载、摩擦、环境变化的影响,难以获得其精确全面的数学模型。这给塔式起重机的控制设计带来巨大挑战。本课题针对这类具有未知动力学的欠驱动系统控制问题进行深入研究,探索了塔式起重机位移目标跟踪和缆绳摆角抑制相关的问题,进行了以下相关研究工作:(1)塔式起重机实验平台的搭建与建模。本课题参照实际生产设备自主搭建了变绳长塔式起重机实验平台,该平台可检验控制策略在实际应用中的有效性和可靠性。该平台具有吊臂回转、小车移位和缆绳收放等功能。在实验平台的基础上,本文基于拉格朗日运动学方程建立了变绳长塔式起重机动力学模型,并对模型其进行分析及简化,用于后续控制设计和算法验证。(2)提出一种全反馈最优观测器控制方法。针对具有未知内部动力学和外界扰动系统的估计及控制问题,本文设计了一种最优全反馈观测器。该观测器根据LQR公式自动确定极点,保证观测器观测过程中的最优性和稳定性。在此基础上,将观测与反演控制结构结合,形成一种基于全反馈最优观测器的反演控制方法,该方法不依赖系统具体数学模型,同时具备结构化、层次化的优点。(3)塔式起重机吊运与负载防摆控制对比实验。本文根据现有基于模型控制方法和无模型控制方法及本文方法设计了三组对比实验:能量整形控制,Q-Learning控制,基于全反馈最优观测器的反演控制。在仿真实验中对比了三类算法在塔式起重机吊运过程中的位置控制及负载摆角抑制效果。最终在物理实验平台中进行了算法有效性的测试。仿真和实物实验结果均表明了基于全反馈最优观测器的反演控制算法的优越性和可靠性。综上所述,本文针对塔式起重机控制的强耦合、非线性、欠驱动、精确数学模型难以获得的问题,设计了一种新型基于全反馈最优观测器的反演塔式起重机控制方法。另外设计了能力整形、Q-learning等塔式起重机控制策略作为对比。证明了基于全反馈最优观测器的反演控制方法在处理具有未知动力学模型、欠驱动系统时的优越性和实用性。
其他文献
理论研究与工程实践表明,模型预测控制面向处理复杂化工过程的非线性、大时滞等特性是一种有效的方法。然而,其预测模型的建立通常需要进行现场的在线测试、而影响正常生产;另外,化工过程由于受到原料状况以及调度策略的改变、产生多种操作工况,这会使得单一工况的预测模型出现较大偏差,从而降低模型预测控制的性能。针对以上问题,论文研究了一种基于数据深度学习的化工过程多工况模型预测控制方法(MC-MPC),所完成的
在传统石油、化工等一些复杂工业过程的优化控制中,针对工业实际需求,人们一直致力于生产质量、生产效率及自动化的发展。在解决像操纵变量决策优化等复杂问题时,通常受到模型不确定及大时滞的影响。基于最优控制理论方法的提出及其应用,推动了工程控制领域的发展。但是这些方法往往依赖专家经验驱动决策方向,容易受模型失配和维度灾难问题的制约,由于时延问题导致的策略实时优化难以实现。针对以上问题,本文提出了一种基于目
广袤的海洋蕴藏着丰富的资源,船舶业飞速发展,各类船舰在海洋中长期航行,会导致海洋生物长期附着在船舶表面,从而大大增加船舶阻力,降低船舶行驶速度,增加油耗,缩短船舶服务寿命,因此船体表面附着物的清洗是实现船舶节能减排的重要途径之一。我国针对船体的清洗技术仍落后于发达国家,尚不能满足国内船舶市场需求。研发自动化程度高的船体清洗机器人,具有重要意义。本文结合船体清刷ROV(Remote Operated
近年来科技发展迅速,移动机器人的应用更加多元,而实现其在工业和生活更深维度应用的一个重要前提是定位与对于环境的感知建图,SLAM技术作为实现移动机器人定位建图的关键成为研究热点。本文研究了RGB-D相机和IMU传感器融合的SLAM方案,只是视觉SLAM虽能够实现定位与建图,却不能实现场景中语义信息的提取,场景中的语义信息可以通过基于卷积神经网络(CNN)的语义提取算法提取。因此总体来说,本文采用视
给水管网是一个城市中不可缺少的基础设施,是城市居民生活和工业生产的生命线工程。随着人口的逐年增长以及城市的扩张,城市用水需求持续增加,城市现存的老旧给水管网不能满足城市用水需求,使得城市给水管网改扩建工程十分必要。科学合理的给水管网设计方案不仅能够节省管网建设成本和运行维修费用,还可以增加供水系统的可靠性。本文通过研究给水管网的优化设计,设计了给水管网优化模型,提出了一种改进麻雀搜索算法,对给水管
流程工业的规模发展越来越大,有效建立过程模型对于生产过程优化控制有重要意义。当前基于数据驱动的智能建模成为了控制科学与工程领域的研究热点。神经网络技术是典型的数据驱动技术,已经广泛应用于过程建模。其中,回声状态网络(Echo State Network,ESN)作为典型的递归神经网络,训练速度快,泛化能力强,能够有效处理动态时序数据,因此研究新型可靠的ESN用于复杂工业过程建模具有重要的理论意义和
本文全面分析的了无人机集群编队的控制策略,对无人机集群编队系统的运动学模型进行了数学建模,同时对无人机集群的协同控制器进行深入的研究,针对传统无人机编队控制策略存在过于依赖领航者以及通信延迟的问题,进一步完善了无人机编队建模的方法;同时针对滑模控制器的指数趋近律进行优化,并优化改进控制算法,采用理论分析结合仿真、实际飞行实验的数据来加以验证。主要研究内容如下:首先,本文基于弹性系统模型,在不考虑环
建筑施工安全生产过程中积累了大量安全检查纪要、专项安全检查报告和安全事故报告等相关数据,这些数据中隐含着安全隐患和安全事故的重要信息。利用深度学习模型对安全检查纪要文本中的数据进行提取并对进行文本挖掘,可以挖掘出安全隐患的空间分布规律、时间分布规律和强关联规则等信息,这些信息对建筑施工安全管理具有重要的意义。但是用深度学习模型对安全检查纪要进行文本挖掘时,面临着数据集规模小、样本数据分布不均衡、安
近几年过程工业发展愈发快速且多变,如何有效地对生产过程进行故障诊断受到广泛关注。值得注意的是,实际工业运行过程中往往存在多种类型的故障,并且正常样本和故障样本之间具有极度的类别不平衡性,所以开展面向类别不平衡数据的多故障诊断方法研究具有一定的现实意义和应用价值。本文着重开展面向类别不平衡数据的多故障诊断方法研究。主要研究内容包含以下几个部分:(1)针对实际复杂工业过程数据的类别不平衡性问题,提出了
微机电系统(Micro Electro Mechanical System,MEMS),指尺寸可以达到毫米及以下的高集成化科技装置,在此技术基础上产生的MEMS加速度传感器由于功耗低、体积小、价格低廉等优点,广泛应用于麦克风、姿态控制、振动检测等方面。由于MEMS加速度计在日常生活中的广泛应用,在保持其精度的同时,如何降低功耗,是当下研究的热点。MEMS加速度计检测电路是MEMS传感器的核心模块之