氢分离用质子导体陶瓷膜的制备及应用研究

来源 :中国科学院大学(中国科学院上海硅酸盐研究所) | 被引量 : 0次 | 上传用户:juk3donda
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
发展氢经济需要建立包括氢气生产、提纯、储存、利用和回收等在内的完整技术与产业链,从含氢混合气中选择性地提纯氢气仍然具有挑战性,特别是从稀释氢混合气中提纯氢气。与传统的氢气分离技术相比,氢分离用质子导体陶瓷膜具有耗能低、稳定性良好、机械强度高、操作简单和膜材料便宜等众多优点。目前研究的氢分离用陶瓷膜的性能受限于双极电导率特别是电子电导率的不足,不能满足实际工业应用的要求,迫切需要开发新型陶瓷膜材料,并优化氢分离用陶瓷膜的结构以降低质子体相传输阻抗和氢气的表面交换阻抗。本文以Ba Zr0.1Ce0.7Y0.2O3-?(BZCY)为质子导体采用“流延-层叠-热压-共烧结”的工艺路线分别制备了双相混合质子-电子导体陶瓷氢分离膜和质子导体电化学氢泵,实现了氢气的高效分离。首先,采用固相反应法和溶胶凝胶法制备了一系列质子导体燃料电池阴极材料粉体,利用X射线衍射、热膨胀分析以及电导率测定等手段从中遴选出合适的电子导体相,然后将电子导体相和质子导体相复合制备了“多孔|致密|多孔”结构的双相混合质子-电子导体氢分离膜,并对陶瓷膜的氢分离性能进行了研究。结果表明:(1)在所研究的几种电子导体材料中仅有Sr Fe0.75Mo0.25O3-?(SFM)和Gd0.2Ce0.8O2-?(GDC)可作为双相陶瓷氢分离膜的电子导体相,且BZCY/SFM复合陶瓷膜的氢分离性能约为BZCY/GDC复合陶瓷膜的2~3倍;(2)“多孔BZCY/SFM55|致密BZCY/SFM55|多孔BZCY/SFM555”结构的BZCY/SFM55双相陶瓷膜的氢分离性能远低于预期,原因是多孔BZCY/SFM55在高温烧结后具有较低的催化活性;(3)采用Ni O/BZCY作为多孔支撑层,由于原位还原得到的金属Ni具有优异的催化活性,大幅提升了该复合膜的氢分离性能,在750℃下的氢分离速率达到了3.1 m L·cm-2·min-1,即使在500℃的低温下,氢分离速率仍高达2.8 m L·cm-2·min-1。其次,由于双相陶瓷膜氢分离的驱动力为氢浓度差,当原料气中氢浓度较低时无法完成氢气的分离提纯;而质子导体电化学氢泵氢分离的驱动力为外部电场,可以实现逆浓度梯度的可控高效氢分离。故采用“流延-层叠-热压-共烧结”的工艺路线制备了“多孔Ni O/BZCY|致密BZCY|多孔Ni O/BZCY”结构的质子导体电化学氢泵,对该电化学氢泵的还原处理条件进行了优化,阐明了还原温度对电极微结构与催化活性以及氢泵工作特性的影响,研究了该电化学氢泵在低浓度稀释氢中的氢分离回收能力;最后制备了“多孔Ni O/BZCY|致密BZY|多孔Ni O/BZY”结构的电化学氢泵,并研究了其在含CO2气氛下的氢分离回收性能。结果表明:(1)低温还原得到的Ni颗粒上含有大量孔径约70nm的纳米孔,这些纳米孔增大了金属镍对H2的解离和复合反应的催化活性,随着还原温度的升高,Ni颗粒上的纳米孔不断坍塌消失,Ni颗粒的烧结收缩使得Ni颗粒与BZCY颗粒之间的间隙逐渐增大,阻碍了Ni颗粒和BZCY颗粒之间的电荷转移反应;(2)低温还原的电化学氢泵的氢分离性能比高温还原的电化学氢泵提高了~6倍;(3)低温还原的电化学氢泵在500℃下从50%H2-50%N2混合气中分离纯氢的最大速率可以达到15.8 m L·cm-2·min-1,在氢分离过程的法拉第效率几乎为100%,所需能耗仅为1.62k Wh/m3 H2;(4)氢分离性能随原料侧氢浓度的降低而下降,从10%H2-90%N2的稀释氢中回收纯氢,HP500在500℃和1.62V工作条件下的氢分离速率为6.4 m L·cm-2·min-1,回收率为68%;从10%H2-90%CH4的稀释氢中回收纯氢,HP500在500℃和1.3V的工作条件下的氢分离速率为3.65 m L·cm-2·min-1,回收率为39%;(5)“多孔Ni O/BZCY|致密BZY|多孔Ni O/BZY”电化学氢泵可以实现H2-CO2混合气中的长期稳定氢分离和回收,在连续50h的氢分离测试过程中没有观察到显著的泵氢电压上升现象,测试后未见Ba CO3杂质相的生成。最后,采用“流延-层叠-热压-共烧结”的工艺路线制备了“多孔Ni O/BZCY|致密BZCY|多孔BZCY”骨架,利用湿化学浸渍法将Ba Gd0.8La0.2Co2O6-?(BGLC)纳米颗粒负载到多孔BZCY中得到质子导体单电池,研究了该电池的放电-电解特性。结果表明:(1)该单电池具有非常优异的放电特性,750℃下的最大输出功率密度为1.20W·cm-2,即使在500℃低温下仍然具有0.43W·cm-2的最大输出功率密度;(2)该电池具有非常优异的电解性能,施加1.3V的电解电压在500℃和700℃下的电解电流分别达到了0.28和1.22A·cm-2;(3)该电池展示了良好的“燃料电池-电解池”循环稳定性,性能在5个循环(累计50h)操作后几乎没有衰减。
其他文献
随着信息化建设的不断发展,军队采购行业数据化水准不断提高,产生了大量标准化和非标准化数据。为保障平时业务运行,同时为后勤指挥员决策提供数据支撑,有必要将海量数据进行抽取、分类、清洗、转化,形成具有军队采购特色的数据应用。本文基于以上现状,初步研究了军队采购平台数据服务能力建设的要点。
期刊
舱门是飞机结构的重要部件,舱门试验是验证舱门设计满足可靠性、安全性、适航要求的重要手段。民用飞机舱门试验包括设计验证试验和适航验证试验,结合民用飞机舱门研制的经验和教训,本文研究总结了舱门研制过程中,应当开展的试验项目和内容,提出了试验的试验目的、试验意义和开展试验的必要性,给出了试验台架设计建议。
固态照明光源被公认为是21世纪的新型绿色照明光源,具有效率高、能耗低、稳定性好、寿命长、无毒环保等优点。固态照明包括白光LED技术及激光照明技术,二者分别利用LED和LD芯片激发荧光材料得到白光。荧光材料的性能在很大程度上决定了白光的质量,因此其研究和开发越来越受到人们的重视。当今社会对高功率、高亮度照明光源的需求使得荧光材料在散热方面面临着严峻的考验,传统的“荧光粉+有机树脂”已经不再适用。在可
钛是常用的口腔修复材料,具有良好的生物相容性和力学性能,但其表面缺乏生物活性,与人体软组织结合不良,密封性差,导致细菌和异物侵入,引发种植体周围黏膜炎,破坏种植体稳定,最终种植体松动甚至脱落。改善软组织密封性能,对保证钛作为牙科种植体的使用寿命尤为关键。作为口腔软组织重要组成细胞,人牙龈成纤维细胞(HGFs)对材料表面响应与材料软组织密封性能息息相关,基于此目的,论文将石墨烯衍生物、镁和锌负载在钛
纳米酶学的蓬勃发展为癌症的精确诊断和高效治疗开辟了一条崭新的道路。化学动力学治疗(CDT)是利用纳米酶(例如Fe基、Mn基、Cu基等纳米生物材料)催化肿瘤微环境(TME)的过氧化氢(H2O2)发生芬顿或类芬顿反应产生活性氧物种(ROS)来抑制肿瘤细胞生长的治疗方式。常见的ROS有羟基自由基(·OH)、单线态氧(1O2)、H2O2及超氧自由基等。文献调研发现,较高浓度的ROS通过细胞氧化应激反应可以
细胞外基质(ECM)对细胞行为起着至关重要的调控作用。该调控主要是通过细胞与材料表面的相互作用实现,在此过程中,细胞通过骨架蛋白感知接触界面的微形貌、拓扑结构、硬度等外界因素,通过细胞骨架重组改变细胞力学状态,从而影响细胞信号通路调控和相关蛋白的表达反馈,诱导细胞行为发生改变。研究材料表面对细胞行为的作用规律和机理,对生物材料制备以及临床医学研究具有重要意义。本论文从“无序到有序”,“各向同性”,
半导体型气体传感器因其生产成本低、制作工艺简单、产品便携和可大规模制备等突出优点,依然是当前热点研究领域之一。近年来,在氧化物半导体气敏材料的研究方面所取得的突出进展使得高性能气体传感器的实现成为了可能,并且基于部分氧化物气敏材料的半导体器件已经在气体检测方面达到了商业化应用的水平,如Zn O、Sn O2和WO3等。但是,基于氧化物材料的半导体型气体传感器还面临着工作温度高、选择性差和功耗高等问题
稀磁半导体(Diluted Magnetic Semiconductors,DMSs),一般指掺入过渡金属元素或稀土金属元素而构成的一类新型半导体材料。氧化锌(ZnO)结晶态材料(薄膜、晶体等)是一种宽禁带半导体材料,具有优异的光学和电学性能,并可通过掺杂实现磁光和磁电特性。因此,ZnO基稀磁半导体材料一直是稀磁半导体研究领域的热点。在过去的十余年间,人们在过渡金属元素掺杂ZnO基稀磁半导体材料研
对于肿瘤性骨缺损的治疗,开发一种兼具骨缺损修复和术后辅助治疗肿瘤的双功能生物材料具有重要意义。由于光疗在肿瘤治疗上具有疗效高、副作用小、靶向性强的优势,我们团队早期开发了具有光热效应的生物活性骨肿瘤治疗支架,主要是通过二维材料(石墨烯,二硫化钼等)在支架表面进行修饰,但这些二维材料的引入可能导致降解性不可控的问题。考虑到Ca-Si基生物活性材料的降解性和骨修复能力,我们设想制备具有光热性能的Ca-
开发具有环境耐受、功能多样且易于加工的生物大分子涂层和图案化材料可以推进生物光子、生物电子、生物传感、生物医药、组织工程等多领域的研究与应用。然而现有的生物大分子涂层材料(如聚多巴胺、聚多酚和溶菌酶)和图案化材料(如肌动蛋白、丝素和角蛋白)通常无法完全整合上述这些特征,因此应用受到了很大的限制。大肠杆菌生物被膜中富含一种名为Csg A的淀粉样蛋白纳米纤维。这种纳米纤维具备很多优异的性质:首先,蛋白