【摘 要】
:
InN超导的出现意味着Ⅲ-Ⅴ族半导体材料可以横跨超导、微电子、光电子等诸多领域。将InN超导特性与第Ⅲ主族的氮化物半导体结合并实现片上集成有着非常重要的应用前景。由于InN同时兼具超导体和半导体的两种性质,一个直接的应用就是超导单光子探测器。本文主要研究了InN不同线宽(5/10/50μm)在变温变磁、低温变光的微电流条件下的输运测试,研究线宽对InN超导性质的影响;以及研究InN不同线宽对不同波
论文部分内容阅读
InN超导的出现意味着Ⅲ-Ⅴ族半导体材料可以横跨超导、微电子、光电子等诸多领域。将InN超导特性与第Ⅲ主族的氮化物半导体结合并实现片上集成有着非常重要的应用前景。由于InN同时兼具超导体和半导体的两种性质,一个直接的应用就是超导单光子探测器。本文主要研究了InN不同线宽(5/10/50μm)在变温变磁、低温变光的微电流条件下的输运测试,研究线宽对InN超导性质的影响;以及研究InN不同线宽对不同波段LED的光响应情况:(1)研究了不同线宽的InN微米带的的超导特性,发现即使线宽的变化并不在微观尺度,而是在微米级别的宏观尺度,其对超导转变温度Tc、临界磁场Bc、临界电流密度Jc都有很大的影响,并给出了定性的理论解释,证明了 InN的超导相干长度极大,约3-10μm;当超导体的横向尺寸(比如,在超导纳米线中,横向尺寸就是其宽度)小于它的库珀对的超导相干长度的时候,超导体的基本性质(比如临界温度、临界电流密度等)会变得与其横向尺寸有关。我们称该种对横向尺寸敏感的超导体线为一维超导体。(2)探索了 InN作为超导单光子探测器的应用基础;当入射光子与库珀对或涡旋的直接作用下,长波(3.9μm/1.55μm)下表现出一种慢响应(光热效应);短波(blue/945nm)下表现出一种快响应(非平衡光响应)。对于非单光子源,弱光下满足光子能量满足泊松分布,除T<<TC外,大部分温度范围存在单光子响应,与ILED成正比;另外,T≤0.4K附近为双光子响应与ILED2成正比。这与NbN纳米线观察结果一致。实验结果为该材料在半导体领域和超导领域及其交叉学科的应用提供了较好的研究基础。
其他文献
凸阵换能器是腹部超声成像的重要部件,其电声性能直接关乎成像的分辨率和对比度等。弛豫铁电单晶Pb(Mg1/3Nb2/3)O3-x Pb Ti O3凭借其远超Pb(Zr1-xTix)O3陶瓷的压电、介电和机电耦合性能在超声换能器应用中有着天然的优势。对于单晶凸阵换能器的研发方面,出于应用的学科知识过多,整体的设计及其复杂,已然成为高端超声设备研发的巨大障壁,近些年来政府出台了鼓励高端医疗设备的自主研发
模拟神经突触晶体管是一种具备大量记忆状态的记忆器件,通过其可控的电导率来模拟神经突触的权重,从而实现和生物突触类似的兴奋性和抑制性。使用半导体器件来模拟神经网络中的行为,能耗高且体积庞大。而基于离子调控的模拟神经突触器件具备丰富的记忆状态,其可控的电导率可用于等效生物突触的权重,远优于电路模拟的方法。因此开发此类器件具有很高的研究价值。另外,石墨烯及其修饰物已经被证实具备很高的机械强度和生物相容性
目前,量子阱红外探测器(QWIPs)由于其波长可调、微纳加工工艺简单成熟、成本低廉、材料均匀性高等优点,已经成为红外探测领域中备受关注的研究热点。这种探测器可以实现对特定波长的红外辐射的高灵敏度检测,且具有无光谱串扰性,在甚长波红外探测和多色探测等领域有着特有的优势。在气体探测领域,QWIPs可以通过调节量子阱材料组分,实现对具有特征吸收谱线或发射谱线的气体的识别探测,如强温室气体SF6的特征吸收
铁电聚合物聚偏氟乙烯(polyvinylidene fluoride,PVDF)因其具有柔性、优良的电学性能和良好的生物相容性等优点,在能量收集、电热制冷和传感等领域具有重要应用价值。相较于纯PVDF,基于PVDF的纳米复合材料因其全反式构象(极性压电β相)的含量更高,表现出更加优异的压电性能,预期可以显著提升当前传感与换能器件的性能,获得国际上的广泛关注。然而,目前对于PVDF基纳米复合材料中β
2020年人们制备了一类新颖二维单层半导体材料WSi2N4和Mo Si2N4,具备良好的室温稳定性,还预测了多种同类二维材料,如单层磁性VSi2N4和Nb Si2N4。这类二维材料激发了人们的研究兴趣,主要集中在本征材料的光学、磁学和热电性能等,但对其器件性能研究很少。本文采用量子输运方法研究二维MSi2N4(M=V,W和Nb)异质结的光生电流效应,探讨光电流的自旋输运性质,主要研究内容和结果如下
极化激元束缚在界面,具有突破衍射极限的特性,这使得亚波长尺度下的光调制成为新的可能。随着散射型近场扫描显微镜的纳米级空间分辨成像功能的优化升级,可以轻松的在实空间对极化激元测试和成像,故极化激元成为了微纳光子学的热点研究领域,在光与物质强耦合、增强型共振腔、光波导等领域均有大量物理机制和器件应用研究。近年来,块状范德华晶体剥离得到二维薄膜在技术上已经可以实现,科学研究人员在二维薄膜上发现存在极化激
21世纪以来,随着微波技术的不断发展,其在通讯、雷达、生物医疗等领域的应用也越来越广泛,然而,大量微波电子器件的使用在给我们的生活带来便利的同时,也带来了日渐加剧的电磁污染问题。因此,微波波段的电磁屏蔽已经成为了一个热门的研究领域。并且随着科技的不断进步,人们对于电磁屏蔽材料的要求也越来越高,不仅需要有很好的屏蔽性能,还需要同时具备轻质、柔韧、超薄等复合功能。我们迫切的需要找到一种满足以上条件的新
超导混频技术是实现太赫兹波段观测的一项重要技术,而超导SIS结是超导混频器的核心部件,因此制备出高质量的超导SIS结对于太赫兹频段天文观测至关重要。本论文依托于LCT亚毫米波望远镜项目,针对230、345 GHz频段,对Nb薄膜、Al Ox薄膜以及Nb/Al Ox/Nb超导SIS隧道结进行了制备和性能研究。具体研究内容和研究结果如下:1、研究磁控溅射中溅射气压与溅射功率对于Nb薄膜晶体结构、表面形
非晶氧化物半导体(AOS)材料以其高载流子迁移率、宽光学带隙和低温处理工艺等独特优势,作为薄膜晶体管(TFTs)的沟道层材料受到了广泛关注。性能优异的AOS一般基于In2O3材料,但In元素资源短缺且具有毒性。Sn O2材料资源相对丰富,且由于Sn4+的[Kr]4d105s~0与In3+相似,有利于电子输运,同样可以获得较高的载流子迁移率。本论文以溶液法Sn Ga O TFTs为研究对象,通过改变
锆钛酸铅系(PZT)铁电材料因其优异的铁电,介电及压电性能在微机电系统等方面有着重要应用,如何进一步提升当前核心压电薄膜的压电与机电耦合性能长期以来一直是国际上关注的焦点。以铌锰酸铅-锆酸铅-钛酸铅(PMN-PZ-PT)为代表的新一代弛豫铁电材料引起了人们的广泛关注,在准同型相界成分(MPB)附近,兼有压电与机电耦合性能和更好的温度稳定性,在传感器,换能器及驱动器等领域有重要的应用前景。本文主要对