论文部分内容阅读
近年来,水污染严重危及人类健康,传统的芬顿处理法具有运行成本较高、最佳pH范围小、产生大量的铁泥、均相催化剂难以回收等局限性。基于非均相催化剂的超声芬顿技术是一种新型的高级氧化技术,因具有设备简单、易于回收、反应快速等优点而受到重视。基于此,本文以功能结构一体化的泡沫铁为催化剂及催化剂载体,构建以罗丹明B为目标污染物的非均相超声芬顿体系,考察其作为有机废水预处理工艺的降解效能及作用机制。以泡沫铁为催化剂构建超声/泡沫铁/H2O2体系时,超声与芬顿的组合工艺表现出明显的协同效应,显著提高了水中罗丹明B的去除效能。罗丹明B的去除效能在变幅杆式超声发生器中以脉冲模式作用时最高,并与超声功率、H2O2的投加量在一定范围内呈正相关,与水体初始温度、初始pH值呈负相关。当超声强度为300W,超声频率为20k Hz,温度为25℃,pH为3.0,RhB初始浓度为5mg·L-1,H2O2初始浓度为0.5m M时,罗丹明B经1min的反应即可达到92.45%的去除率,但后续的反应极易产生铁泥。为了拓宽该体系的pH适用范围,本文尝试投加不同的配合剂,发现可以起到一定的拓宽pH适用范围作用,但去除效率远不及H2O2。当投加不同类型泡沫金属时,发现泡沫双金属是高效去除并减少铁泥和拓宽pH的最佳选择。以泡沫铁为催化剂载体,合成泡沫铁镍双金属催化剂,所构建的超声/泡沫铁镍/H2O2体系在初始pH为3.0时,一级反应表观速率常数(70.88×10-3·s-1,R2=0.99)为超声/泡沫铁/H2O2体系的1.77倍。且在pH为3,4,5的条件下超声/泡沫铁镍/H2O2体系对罗丹明B的去除效能都高于超声/泡沫铁/H2O2体系,说明镍的修饰有效拓宽了该体系的pH适用范围。以泡沫铁镍为催化剂载体,合成TiO2-泡沫铁镍声光催化剂,通过TiO2修饰在泡沫铁、泡沫镍以及泡沫铁镍载体的对比研究,发现TiO2-泡沫铁镍在反应中能够有效克服催化剂钝化的同时达到高效的去除能力。通过UV-vis DRS分析及避光对比试验,证明该催化剂达到了可见光催化效能,有效提高了能量利用率。在初始pH为4时,超声/TiO2-泡沫铁镍/H2O2体系的一级反应表观速率常数(1.87×10-2·s-1,R2=0.99)为超声/泡沫铁镍/H2O2体系的3.40倍。此外,在初始pH为5,6,7时,其去除效率都显著高于超声/泡沫铁镍/H2O2体系,说明该体系在提高能量利用率的同时进一步拓宽了pH适用范围。机理分析表明,超声不仅促进了Fe2+的释放和再生,也促进了H2O2的分解和产生,有效提高了均相芬顿反应单元的进行,利于有机污染物的氧化分解。镍有效缓解了Fe2+的释放,促进了Fe2+的再生,而TiO2-泡沫铁镍在此基础上进一步促进了Fe2+的再生,由此有效促进了液体中芬顿氧化反应。超声空化裂解O2以及光生电子活化O2产生的O2-·是这三种超声芬顿体系的主要氧化活性物质,主要起到氧化分解有机物和促进Fe3+还原成Fe2+的作用。另外一种重要的氧化活性物质是·OH,其中TiO2-泡沫铁镍催化剂能产生最多的·OH,并可在同一反应时间内使有机物降解程度最高。泡沫铁、泡沫铁镍、TiO2-泡沫铁镍三种催化剂都具有良好的稳定性和重复使用性,尤其是经过镍修饰后的泡沫铁,抗腐蚀性有效提高,但也有表面活性成分经反应和酸洗过程脱落的现象,因此需要进一步优化合成条件,达到更高的稳定性,实现工业化应用。通过三种催化剂构成的超声芬顿体系分别对不同类型的染料去除效能比较研究,发现对不同染料具有效能差异。因此需要在不同水体条件中选用不同的超声芬顿体系,以期达到最好的去除效能。本研究合成的泡沫铁镍、TiO2-泡沫铁镍催化剂及其构建的超声类芬顿体系不仅能够达到对染料的高效去除,还能克服体系产铁泥的现象,有效拓宽了pH适用范围,为有机废水的高效预处理工艺提供了新思路,为实际处理过程中的调控提供了理论支持。