论文部分内容阅读
立方相碳化钽和碳化铪拥有缺碳特性,即Ta Cm和Hf Cn,m、n≤1,可在全化学计量比范围内固溶得到碳化钽铪(Ta1-xHfxC),其固溶体系中Ta0.8Hf0.2C熔点约4027°C,是目前高温热稳定性最佳的超高温陶瓷材料,有望被用作制备高超声速飞行器耐热烧蚀结构件。作为耐热烧蚀结构材料,碳化钽铪超高温陶瓷应具有高致密度、均匀的显微结构和良好的力学性能。但是,Ta C、Hf C及其固溶相均具有极强的共价键特性和较低的自扩散系数,碳化钽铪陶瓷的烧结致密化完全依赖于高温多场辅助烧结手段,难以通过常压烧结实现致密化,这已成为制约碳化钽铪超高温陶瓷发展的瓶颈问题之一。此外,碳化钽铪超高温陶瓷的热学、室温/高温力学性能和耐烧蚀性能,以及固溶度等本征缺陷对其性能的影响也亟待探索。本文围绕着Ta1-xHfxC基超高温陶瓷的固溶行为、烧结致密化、显微结构调控、性能评价及提升和本征缺陷设计的思路,系统地研究了该体系“组成-结构-性能”之间的关系。在常压烧结获得高度致密的Ta0.8Hf0.2C陶瓷基础上,分别通过原位生成和直接外加的方式引入Si C,实现了Ta0.8Hf0.2C基复相陶瓷的微观结构裁剪和性能优化;从过渡族金属碳化物的固溶机理研究出发,筛选出Cr3C2液相烧结助剂,在较低温度实现了Ta1-xHfxC系列固溶相陶瓷的烧结致密化;借助第一性原理(DFT)理论计算预测了本征缺碳Ta1-xHfxCy的脆延转变点,并成功制备出该系列三元碳化物,通过纳米压痕等实验验证了理论计算的可靠性。主要研究内容如下:(1)从具有超高熔点的Ta0.8Hf0.2C相陶瓷的常压烧结致密化出发,深入研究了烧结过程中的固溶行为和烧结致密化机理。研究发现,由酚醛树脂得到的裂解碳提供富碳的烧结环境,还原Ta C和Hf C商用粉体表面杂质氧化物,并有利于1600oC-2200oC温度区间的完成固溶行为。Ta C与Hf C晶界处的固溶行为降低了自身的扩散激活能,促进了以晶界扩散主导的致密化进程。2200oC保温阶段的晶界扩散有助于闭气孔的排出,陶瓷的相对密度由97.3%提高到98.8%。(2)分别以原位引入和直接外加的方式制备出高度致密的Ta0.8Hf0.2C-Si C复相陶瓷:系统地研究了原位引入Si C在Ta0.8Hf0.2C基陶瓷致密化进程中,发生β→α相变;在Ta0.8Hf0.2C基体相中原位生长出长径比高达15.2的晶须状Si C,该“自锁”显微结构具备自增韧的特性,使得复相陶瓷的断裂韧性和三点弯曲强度分别达到5.4±1.2 MPa?m1/2和443±22 MPa,较之Ta0.8Hf0.2C纯相陶瓷分别提升了15%和24%;直接外加的亚微米级Si C颗粒钉扎晶界,阻碍烧结过程中的晶界迁移,抑制了Ta0.8Hf0.2C晶粒的生长。随着Si C的增加,Ta0.8Hf0.2C基复相陶瓷的韧性得到了提高,从4.7 MPa?m1/2比提高到5.7MPa?m1/2,优化幅度21.3%。直接外加10vol%Si C的复相陶瓷在等离子体火焰烧蚀考核中线性烧蚀率仅为Ta0.8Hf0.2C纯相陶瓷的五分之一,且烧蚀后得到双层氧化保护层。(3)使用Cr3C2助剂在1800oC制备出相对密度>97%的Ta1-xHfxC三元固溶相陶瓷。系统地研究了Cr3C2助剂对不同Ta/Hf固溶比的Ta1-xHfxC样品烧结致密化的贡献,深入分析了Cr3C2作为液相烧结后与主相晶粒的固溶行为和机理。Ta C与Cr3C2存在明显低温共熔现象(~1462oC),因而固溶相中Ta C所占比重决定了实际线收缩最大速率发生温度。Cr3C2作为液相烧结助剂,随着烧结温度变化从面心正交晶型(Cr3C2、Cr7C3)脱碳相变成面心立方相(Cr23C6),并与Ta1-xHfxC主相晶粒发生有限固溶。烧成的Ta0.5Hf0.5C综合力学性能较好,弯曲强度达到492±19 MPa,弹性模量为374±9 GPa,维氏硬度(HV3)为19.9±0.6 GPa,断裂韧性为5.8±0.3 MPa?m1/2,CTE(室温至1000oC)约7.51×10-6/K。(4)基于密度泛函理论(DFT)的无序结构计算方法(SQS),预测了Ta1-xHfxCy(0<x<1,0.8≤y≤1)材料的硬度、模量和脆延性转变点。根据Pugh比值和泊松比的“脆延”判据,预判Ta0.8Hf0.2C0.8是Ta1-xHfxCy材料中脆性-延性转变点,其k值为0.58,v值为0.26,介于离子键和金属键属性之间。实验上,Ta0.8Hf0.2C1.0的硬度由34.4±1.9 GPa增加到Ta0.8Hf0.2C0.8的41.3±1.3 GPa:晶胞中碳原子的缺失在短程范围内引起了不均匀原子排布,有效地抑制位错运动,阻碍滑移发生,达到硬化的效果。相应的压痕模量从641.7±14.8GPa降至555.8±9.9 GPa。XPS图谱对制备的Ta1-xHfxCy材料C 1s区域分析,晶格中碳空位浓度增加,C-Me(Hf/Ta)特征峰会发生偏移。C-Me特征峰则随缺碳程度增加而变小,Ta0.2Hf0.8C1.0相缺碳后向更低能量方向偏移;而Ta0.8Hf0.2Cy样品,C-Me特征峰在缺碳后峰值升高,Ta0.8Hf0.2C0.8化合物位于282.9 e V附近。原本被C原子束缚的Hf/Ta核外价电子能够自由的活跃在费米能级附近,材料因而获得金属性,Ta0.8Hf0.2C0.8化合物的金属性最强。