论文部分内容阅读
经过多年实践和论证,我国进行深海采矿的现行技术方案是采用水力式集矿方式,该深海采矿系统主要由水面平台、水下垂直输送系统和履带式集矿机三部分组成,而集矿机是深海采矿系统中的重要装备和核心技术单元。由于深海多金属结核矿区地形复杂多变,深海表层稀软底质土有极高的含水率、极小的内摩擦角、高液限、高塑性、大孔隙比、低强度、低重度等特性,因此需要集矿机具备良好的抗沉陷和抗打滑性能以及良好的转向和爬坡性能等,而这些性能是履带结构参数与稀软底质土耦合作用的结果。本文基于Bekker承压模型、Janosi和Hanamoto剪切模型,结合新型履带式集矿机的具体设计方案,根据深海表层稀软底质土的性能和参数,构建了适应该集矿机的稀软底质土模型;并在多体动力学软件RecurDyn中建立了履带式集矿机虚拟样机模型,分别对直线行驶、转向和爬坡等基本动作进行了动力学仿真研究。为了更好理解集矿机在稀软底质土上的动力学行为,还比较了集矿机在重粘性土上行走的特性,对比研究了集矿机在不同性质土壤中的运动学、动力学特性,评价和预测了履带式集矿机的性能。计算结果表明,1、集矿机以1m/s的速度在稀软底质土上爬坡的极限坡度是31°,而在重粘性土中能够攀爬更陡的坡,根据我国深海矿区地形地貌特征,集矿机的爬坡高度不大于15°,集矿机在稀软底质土上能顺利爬坡行驶,有良好的爬坡性能。2、静止状态下,集矿机在重粘性土和深海稀软底质土中沉陷量分别是2mm和19.51mm;当集矿机以1m/s的速度运动时,在重粘性土和深海稀软底质土中的沉陷量分别是25.89mm和33.65mm;稀软底质土中,集矿机分别以1m/s、0.6m/s和0.4m/s的速度运行时,沉陷量分别是33.65mm、35.63mm和37.88mm,在集矿机在稀软底质土上的沉陷比重粘性土中的沉陷要大,速度减小时集矿机的沉陷量有增大的趋势,集矿机在稀软底质土上的抗沉陷性能良好。3、当集矿机两侧履带速度差是0.8m/s时,集矿机在重粘性土和深海稀软底质土的转弯半径分别是4.9m和4.6m,集矿机两侧速度差越大,集矿机的转向半径越小,集矿机在稀软底质土上转向平顺。