【摘 要】
:
细胞色素P450酶(CYPs或P450s)是一个由非常大的基因家族编码的含有血红素作为辅助因子的血红蛋白超家族。在人体中共有57种细胞色素P450酶,根据氨基酸序列同源性可将其划分成18个科(阿拉伯数字表示)和43个亚科(大写字母表示)。CYPs作为ADMET研究的核心,在外源性化合物和内源性物质的Ι相代谢中发挥着重要作用,因此高效简便的CYP活性分析方法在药物开发中是必不可少的。目前,比较简便的
论文部分内容阅读
细胞色素P450酶(CYPs或P450s)是一个由非常大的基因家族编码的含有血红素作为辅助因子的血红蛋白超家族。在人体中共有57种细胞色素P450酶,根据氨基酸序列同源性可将其划分成18个科(阿拉伯数字表示)和43个亚科(大写字母表示)。CYPs作为ADMET研究的核心,在外源性化合物和内源性物质的Ι相代谢中发挥着重要作用,因此高效简便的CYP活性分析方法在药物开发中是必不可少的。目前,比较简便的方法是生物发光分析法,这种方法依赖于通过特定CYP酶的代谢来产生生物发光信号的探针底物,具有灵敏度高以及省时省力的优点。人类CYP1和CYP3A家族是人体中非常重要的细胞色素P450酶。CYP1家族催化包括雌激素和多环芳烃在内的多种内源性物质和外源性化合物的氧化代谢,并且在致癌物的活化过程中具有至关重要的作用。CYP3A家族占人体细胞色素P450酶总含量的30%左右,在人肝微粒体中具有高丰度的表达活性和广泛的底物特异性,参与了人体内约50%的临床药物的代谢清除。本文主要对CYP1和CYP3A家族酶的脂肪族发光探针底物进行了研究,旨在合成新的荧光素底物来探索CYP1和CYP3A家族不同成员在生物表达上的差异。在本研究中,我们合成了二十二种脂肪族荧光素衍生物,包括十一种酸类衍生物和同系列的十一种甲酯类衍生物,随后用二十一种新的底物和Luciferin-CEE分别测试了CYP1和CYP3A家族七种酶的活性。研究结果表明,对于酸类衍生物,碳链的延长和卤素元素的添加对酶的生物转化活性都有一定的影响,但是这一规律并不明显。且对于所有的七种酶,CYP1A1始终对十一种酸类底物具有最高的催化活性。在将荧光素衍生物的羧基转化为甲酯基后,CYP3A家族对这两类底物的催化活性没有明显差异。而CYP1家族则对此结构变化非常敏感,酯化后CYP1家族催化羟基化的活性普遍呈现出不同程度的升高,其中相差最大的超过500倍。并且不同的酶对同一种底物的生物转化活性也具有非常明显的差异,例如CYP1A1催化Luciferin-DFEEME和CYP1B1催化Luciferin-FPEME的RLU值都远高于其余六种酶代谢同一底物的RLU值。这表明将脂肪族荧光素衍生物的羧基转化为酯基这一结构修饰极大地改善了底物对CYP1家族酶的催化反应性和选择性。这可能是未来CYP1家族发光底物研究的重要方向。
其他文献
高海拔的火山和温泉环境是典型的具有代表性的极端环境,因此作为新的和特有的微生物来源在生物学上备受关注。在本研究中,结合可培养微生物形态和分子学分析,以及基于Illumina测序的宏基因组分析,研究了中国东北部天池火山口土壤,以及分布于天池火山北坡的聚龙温泉群水体和沉积物中微生物多样性,以增加对高海拔火山和温泉微生物群落结构的认知。在天池火山口边缘,分离到子囊菌门、担子菌门和毛霉门51种,31属的1
光学活性的3,3′-二取代吲哚酮骨架是合成化学中重要的中间体,此外该骨架也是药物活性分子中一个重要的结构。很多具有生物活性的天然产物以及合成药物都含有这个关键骨架。鉴于3,3′-二取代吲哚酮骨架在天然产物、药物的合成中的重要性和多功能性,对3,3′-二取代吲哚酮骨架的不对称合成进行了大量的研究。本文共分为四大部分,第一部分着重介绍了研究的背景,包含产物研究价值和催化剂相关研究两节。首先介绍了产物的
氧化石墨烯(GO)作为石墨烯的衍生物,与石墨烯的结构和性质类似。GO存在丰富的含氧官能团使其亲水性大幅提高,并能够将核酸、蛋白质等多种物质固定在表面从而制备出功能化的石墨烯复合材料。比色法具有操作简便、裸眼观测、不需先进设备等优点。在第二章,我们利用GO作为载体负载葡萄糖氧化酶(GOx)、辣根过氧化物酶(HRP)和包封2,2’-联氮-双-3-乙基苯并噻唑啉-6-磺酸的脂质体,制备了一种功能化的氧化
超分子化学是近年来的热门话题,主要研究分子之间的作用力和主客体结合等;作为主体的大环化合物是该领域的重要研究对象,其特殊的结构和性质被广泛应用各个领域,通过合成新的大环而开发新的主体是超分子化学领域中具有挑战性的项目。本文在总结柱[5]芳烃的文献基础上,对于其部分氧化衍生物柱[4]芳烃[1]醌和冕[5]芳烃做了进一步修饰,并将所得到的四种新型大环分子进行了结构表征。第一章首先简要介绍了柱[5]芳烃
酰胺合成在有机化学、医药、农业和工业等领域具有重要意义,因为它在构建有机分子和合成中间体方面有着广泛的应用,特别是多肽键的连接和用途最广泛的聚合物连接都是通过酰胺键的形成来实现的。同时,一些已开发的药物和高效除草剂的合成都依赖于酰胺键来实现工业化。而传统的以羧酸和胺为原料的缩合反应或某些催化酰胺化反应,有的虽然可以达到较高的转化率,但在底物拓展和环境保护方面仍有一定的局限性。为了尽可能少的污染环境
吲哚及其衍生物是自然界中分布最广泛的杂环化合物之一,因其具有多种生物活性而在药物化学中占有重要地位,如舒马曲坦,他达拉非,氟伐他汀和利扎曲普坦等著名的药物分子均以吲哚骨架为基础。近年来,随着化学家们对含吲哚骨架分子的深入研究,发现具有立体选择性的2-吲哚基甲烷胺结构于多种具有生物活性的天然产物以及具有药理作用的合成化合物中发挥着至关重要的作用。如可作用于HIV蛋白酶和5HT2B受体,同时在抗病毒,
嘧啶属于含氮杂环芳香族类化合物,是核酸的重要组成部分,它可以为微生物的生长提供氮源或碳源。嘧啶的降解包括还原途径(Pyrimidine degradation pathway,PYD),氧化途径,嘧啶利用途径(Pyrimidine utilization pathway,Rut)和尿嘧啶分解代谢途径(Uracil catabolism pathway,URC)四条途径。每条途径采用不同的催化机理断
四环素类抗生素是一类含有并四苯基本骨架的广谱抗生素。但是,在养殖业中过量使用四环素类将导致食品中的抗生素残留,并通过食物链进入人体内,造成抗生素耐药。比色法具有操作简单、快速、经济且可通过目视直接检测等优点,可实现在现场对四环素的快速检测。金纳米颗粒具有独特的光学性能,其颜色随粒径大小,形状和介电环境的改变而改变。本论文选择了金纳米颗粒作为比色剂,建立了基于金纳米颗粒的比色方法快速检测四环素类。详
在材料科学界,纳米笼状结构已经发展成为生物技术中的多功能平台。这种结构形成了一个中空的内部空间,可以作为储存、活动调节或运送货物分子的容器,包括合成的纳米颗粒、病毒蛋白衣壳和非病毒蛋白衣壳。为了引入新的特性,使有笼状结构的蛋白质功能化一直是研究的重点。笼状结构的蛋白质是由一个或几个蛋白质单体的多个拷贝自组装形成的具有明确的内外表面以及亚单位间相互作用界面的超分子结构。这种自组装引起的复杂机制激发了
鱼尼丁受体(RyR)是位于内质网(ER)和肌质网(SR)膜上的大型Ca2+释放通道。它们是由四个相同亚基组成的四聚体分子。有四个延伸到细胞质中的N末端区域,C末端是跨膜结构域,N末端是疏水结构域。RyR是迄今为止发现的最大的离子通道蛋白之一,分子量约为2.2 MDa。RyR是配体门控通道,在肌肉收缩的过程中,动作电位将首先激活细胞膜上的电压门控钙通道,引起Ca2+内流,打开RyR,导致ER释放Ca