论文部分内容阅读
光波导谐振腔是集成光学领域重要的光子器件之一,是目前光电子领域的研究热点。其中,基于聚合物材料的光波导谐振腔,凭其独特的易调控、低成本及制备工艺简单等优势,在高性能光信号处理及光传感领域呈现出巨大的应用前景。尤其,最新报道的基于聚合物表面等离激元波导的谐振腔,利用聚合物-金属界面的等离激元效应实现光信号的传输与谐振,具有单偏振及波导芯层光电复用等优越特性,为新型高性能、可调控光子器件的实现提供了崭新技术途径。本论文的研究目的是针对聚合物光波导谐振腔新的应用需求,探索大尺寸聚合物光波导谐振腔的优化设计方法和制备工艺,在此基础上研制出高性能谐振腔并研究其光传输特性及应用。同时,探索具有低传输损耗特性的聚合物长程表面等离激元波导在谐振腔中的应用,研究新型谐振腔的结构设计、传输机理、制备工艺和光学特性,并从实验角度揭示其传输规律,验证光模式与等离激元模式在谐振腔中传输的兼容性和等离激元波导为谐振腔引入的新特性。本论文首先从聚合物光波导谐振腔的基本类型、制备技术和应用等几个方面概述了该技术领域的发展情况及关键技术问题,随后介绍了在聚合物谐振腔的理论、结构设计、制备及实验测试方面的研究工作。论文主要工作如下:(1)针对聚合物谐振式集成光学陀螺芯片中的角度率传感单元,研制出了低损耗大尺寸聚合物光波导谐振腔。首先,研究了聚合物光波导的单模条件、最小弯曲半径和耦合器结构,得到了谐振腔的优化结构参数;探索了降低聚合物光波导损耗的工艺方法,首次实现了尺寸达厘米级的聚合物光波导谐振腔;实验测试了聚合物光波导谐振腔的谐振特性、偏振特性和温度特性,得到了聚合物光波导谐振腔在不同偏振及温度情况下的谐振规律,为该谐振腔在光传感及其它光子器件中的应用提供了实验依据;研究了聚合物光波导谐振腔在谐振式光学陀螺中的应用,得到了可实现的陀螺极限灵敏度及其进一步提升的方法。该大尺寸聚合物光波导谐振腔的研制为聚合物谐振式集成光学陀螺芯片中核心传感单元的设计与制备提供了思路与方法。(2)为了解决聚合物光波导谐振腔中的偏振噪声问题,同时避免表面等离激元波导因传输损耗大而无法实现大尺寸谐振腔的难题,基于表面等离激元波导的单偏振特性和聚合物光波导的低损耗特性,提出了一种聚合物光波导/长程表面等离激元波导垂直耦合谐振腔。研究了聚合物光波导与长程表面等离激元波导的耦合效应,展示了两种不同模式的垂直耦合规律。通过工艺优化,制备出了厚度为纳米尺度的银条,实现了传输损耗为0.173 dB/mm的聚合物表面等离激元波导。在此基础上,首次实现了环形介质光波导与金属等离激元波导垂直耦合的谐振腔结构,测试出了谐振效应,发现该谐振腔具有单偏振传输特性。该工作不仅验证了光模式与表面等离激元模式在谐振腔中的垂直耦合转换,也为光波和表面等离激元波具有共同的电磁波属性提供了实验证据。这种垂直耦合谐振腔,具有单偏振、低损耗和集成化等优点,为新型低噪声、高性能集成光子器件和光传感器件提供了新的技术支撑。(3)提出并研制了一种聚合物表面等离激元波导耦合器/光纤混合谐振腔。首先,分析了聚合物表面等离激元波导弯曲半径对传输损耗的影响,得到了该波导的最小弯曲半径;并依此设计并制备了聚合物表面等离激元波导耦合器,实验验证了其单偏振传输特性;在此基础上,首次实现了基于聚合物表面等离激元波导耦合器的石英光纤谐振腔,测出了谐振效应,证明了光波与表面等离激元波在混合谐振腔内可以实现模式转换、循环传输和谐振,并发现了该谐振腔的单偏振特性;另外,建立了混合谐振腔的温度波动性分析模型,论证了该混合谐振腔的温度不敏感性。这种单偏振、温度不敏感的谐振腔,为解决光纤谐振腔器件(如:谐振式光纤陀螺)中的偏振噪声和温度噪声提供了崭新的技术途径。(4)首次探索了基于柔性聚合物表面等离激元波导的光纤谐振腔。设计了柔性聚合物表面等离激元波导结构,并分析了不同弯曲半径对传输模式的影响;研究了柔性聚合物表面等离激元波导的制备工艺,制备出了可实现侧向弯曲的柔性表面等离激元波导样品,并测试了其光传输特性和弯曲特性,发现其最小弯曲半径比传统平面型表面等离激元波导降低了超过50%;在此基础上,首次研制出了基于柔性聚合物长程表面等离激元波导的光纤谐振腔,实验测试了其在不同偏振态下的谐振特性,发现了其单偏振特性。该谐振腔同时具备单偏振特性和温度敏感特性,且将柔性聚合物表面等离激元波导引入混合谐振腔,可有效降低谐振腔内的弯曲损耗并提高混合谐振腔的性能,为新型高性能谐振腔拓展了又一崭新结构类型。